x 2 + y 2 + z 2 + 5 x − 7 y + 2 z − 8 = x^2+y^2+z^2+5x-7y+2z-8= x 2 + y 2 + z 2 + 5 x − 7 y + 2 z − 8 =
( x + 5 2 ) 2 + ( y − 7 2 ) 2 + ( z + 1 ) 2 = 55 2 (x+\frac{5}{2})^2+(y-\frac{7}{2})^2+(z+1)^2=\frac{55}{2} ( x + 2 5 ) 2 + ( y − 2 7 ) 2 + ( z + 1 ) 2 = 2 55
This is sphere with center C ( − 5 2 , 7 2 , − 1 ) C (-\frac{5}{2},\frac{7}{2},-1) C ( − 2 5 , 2 7 , − 1 ) and radius 55 2 . \sqrt{\frac{55}{2}}. 2 55 .
Find the equation of the tangent plane to the sphere at the point P ( − 3 , 5 , 4 ) . P(-3,5,4). P ( − 3 , 5 , 4 ) .
The radius vector or normal is C P = ( − 0.5 1.5 5 ) . CP=\begin{pmatrix}
-0.5 \\
1.5\\
5
\end{pmatrix}. CP = ⎝ ⎛ − 0.5 1.5 5 ⎠ ⎞ .
A vector in the plane we seek is v = ( x + 3 y − 5 z − 4 ) . v=\begin{pmatrix}
x+3 \\
y-5\\
z-4
\end{pmatrix}. v = ⎝ ⎛ x + 3 y − 5 z − 4 ⎠ ⎞ .
So, ( − 0.5 1.5 5 ) ∗ ( x + 3 y − 5 z − 4 ) = 0 ⇒ \begin{pmatrix}
-0.5 \\
1.5\\
5
\end{pmatrix}*\begin{pmatrix}
x+3 \\
y-5\\
z-4
\end{pmatrix}=0\Rarr ⎝ ⎛ − 0.5 1.5 5 ⎠ ⎞ ∗ ⎝ ⎛ x + 3 y − 5 z − 4 ⎠ ⎞ = 0 ⇒
− 0.5 ( x + 3 ) + 1.5 ( y − 5 ) + 5 ( z − 4 ) = 0 -0.5(x+3)+1.5(y-5)+5(z-4)=0 − 0.5 ( x + 3 ) + 1.5 ( y − 5 ) + 5 ( z − 4 ) = 0 .
Answer:
The equation of the tangent plane is
1.5 y − 0.5 x + 5 z − 29 = 0. 1.5y-0.5x+5z-29=0. 1.5 y − 0.5 x + 5 z − 29 = 0.
____________________________________________________________________________________________
Comments
Dear Anshika, thank you for leaving a feedback.
I had wrote there to find equation of tangent line not tangent plane and I also had not understand that how u find -0.5,1.5,5 Very confused. .