Question #162431

Identify the conic x^2- 2xy + y^2 + √2x = 2


1
Expert's answer
2021-02-24T07:10:02-0500

Let's solve this problem

first of all we simplify expression

x22xy+y2+2x=2x^2 - 2 x y + y^2 + \sqrt{2 x} = 2

x22xy+2x+y2=2x^2 - 2 x y + \sqrt{2} \sqrt{x} + y^2 = 2

The graph of conic



Slutions:

Solve for y:

2x+x22xy+y2=2\sqrt{2}\sqrt{x}+x^2-2xy+y^2 = 2

we solve quadratic equation by completing the square.

Subtract 2x+x2\sqrt{2}\sqrt{x}+x^2 from the both sides.

y22xy=22xx2y^2-2xy = 2-\sqrt{2}\sqrt{x}-x^2

D=b24ac=4x2+4(22xx2)=842xD = b^2-4ac = 4x^2+4(2-\sqrt2\sqrt{x}-x^2) = 8 - 4\sqrt{2}\sqrt{x}

x1,2=b±D2ax_{1,2} = \large\frac{-b\pm \sqrt{D}}{2a} = 2x±842x2\large\frac{2x\pm\sqrt{8-4\sqrt{2x}}}{2} =x±22x= x \pm \sqrt{2 - \sqrt{2x}}

Integer solutions: x = 2, y = 2

Implicit derivtives:

δx(y)dy=4x2x34y+6x2y6xy2+2y31+4x2x34y+6x2y6xy2+2y3\large\frac{\delta x(y)}{dy} = \frac{4 x - 2 x^3 - 4 y + 6 x^2 y - 6 x y^2 + 2 y^3}{1 + 4 x - 2 x^3 - 4 y + 6 x^2 y - 6 x y^2 + 2 y^3}

dyδx(y)=1+4x2x34y+6x2y6xy2+2y34x2x34y+6x2y6xy2+2y3\large\frac{dy}{\delta x(y)} = \frac{1 + 4 x - 2 x^3 - 4 y + 6 x^2 y - 6 x y^2 + 2 y^3}{4 x - 2 x^3 - 4 y + 6 x^2 y - 6 x y^2 + 2 y^3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS