Let's solve this problem
first of all we simplify expression
x2β2xy+y2+2xβ=2
x2β2xy+2βxβ+y2=2
The graph of conic
Slutions:
Solve for y:
2βxβ+x2β2xy+y2=2
we solve quadratic equation by completing the square.
Subtract 2βxβ+x2 from the both sides.
y2β2xy=2β2βxββx2
D=b2β4ac=4x2+4(2β2βxββx2)=8β42βxβ
x1,2β=2aβbΒ±Dββ = 22xΒ±8β42xβββ =xΒ±2β2xββ
Integer solutions: x = 2, y = 2
Implicit derivtives:
dyΞ΄x(y)β=1+4xβ2x3β4y+6x2yβ6xy2+2y34xβ2x3β4y+6x2yβ6xy2+2y3β
Ξ΄x(y)dyβ=4xβ2x3β4y+6x2yβ6xy2+2y31+4xβ2x3β4y+6x2yβ6xy2+2y3β
Comments