Identify the conic x^2- 2xy + y^2 + √2x = 2
Let's solve this problem
first of all we simplify expression
"x^2 - 2 x y + y^2 + \\sqrt{2 x} = 2"
"x^2 - 2 x y + \\sqrt{2} \\sqrt{x} + y^2 = 2"
The graph of conic
Slutions:
Solve for y:
"\\sqrt{2}\\sqrt{x}+x^2-2xy+y^2 = 2"
we solve quadratic equation by completing the square.
Subtract "\\sqrt{2}\\sqrt{x}+x^2" from the both sides.
"y^2-2xy = 2-\\sqrt{2}\\sqrt{x}-x^2"
"D = b^2-4ac = 4x^2+4(2-\\sqrt2\\sqrt{x}-x^2) = 8 - 4\\sqrt{2}\\sqrt{x}"
"x_{1,2} = \\large\\frac{-b\\pm \\sqrt{D}}{2a}" = "\\large\\frac{2x\\pm\\sqrt{8-4\\sqrt{2x}}}{2}" "= x \\pm \\sqrt{2 - \\sqrt{2x}}"
Integer solutions: x = 2, y = 2
Implicit derivtives:
"\\large\\frac{\\delta x(y)}{dy} = \\frac{4 x - 2 x^3 - 4 y + 6 x^2 y - 6 x y^2 + 2 y^3}{1 + 4 x - 2 x^3 - 4 y + 6 x^2 y - 6 x y^2 + 2 y^3}"
"\\large\\frac{dy}{\\delta x(y)} = \\frac{1 + 4 x - 2 x^3 - 4 y + 6 x^2 y - 6 x y^2 + 2 y^3}{4 x - 2 x^3 - 4 y + 6 x^2 y - 6 x y^2 + 2 y^3}"
Comments
Leave a comment