Find the cylindrical coordinates of the points where the Cartesian coordinates are
i.(6,6,8)
ii.(√2,1,1)
Solution (i):
Given, "x=6,\\ y=6, z=8"
In rectangular coordinates,
"x=r\\cos\\theta,\\ y=r\\sin\\theta,\\ z=z"
So, "6=r\\cos\\theta,\\ 6=r\\sin\\theta,\\ z=8"
Also, "r^2=x^2+y^2=6^2+6^2=36+36=72"
"\\Rightarrow r=\\sqrt{72}=6\\sqrt2" (Taking positive value only)
And, "\\tan\\theta=\\dfrac yx=\\dfrac 66=1"
"\\Rightarrow \\theta=\\tan^{-1}1=\\dfrac{\\pi}4"
So, cylindrical coordinates are "(r,\\theta,z)=(6\\sqrt2,\\dfrac {\\pi}4,8)"
Solution (ii):
Given, "x=\\sqrt2,\\ y=1, z=1"
In rectangular coordinates,
"x=r\\cos\\theta,\\ y=r\\sin\\theta,\\ z=z"
So, "\\sqrt2=r\\cos\\theta,\\ 1=r\\sin\\theta,\\ z=1"
Also, "r^2=x^2+y^2=(\\sqrt2)^2+1^2=2+1=3"
"\\Rightarrow r=\\sqrt3" (Taking positive value only)
And, "\\tan\\theta=\\dfrac yx=\\dfrac 1{\\sqrt2}"
"\\Rightarrow \\theta=\\tan^{-1}(\\dfrac 1{\\sqrt2})=0.6154" rad
So, cylindrical coordinates are "(r,\\theta,z)=(\\sqrt3,0.6154,1)"
Comments
Leave a comment