Solution (i):
Given, x=6, y=6,z=8
In rectangular coordinates,
x=rcosθ, y=rsinθ, z=z
So, 6=rcosθ, 6=rsinθ, z=8
Also, r2=x2+y2=62+62=36+36=72
⇒r=72=62 (Taking positive value only)
And, tanθ=xy=66=1
⇒θ=tan−11=4π
So, cylindrical coordinates are (r,θ,z)=(62,4π,8)
Solution (ii):
Given, x=2, y=1,z=1
In rectangular coordinates,
x=rcosθ, y=rsinθ, z=z
So, 2=rcosθ, 1=rsinθ, z=1
Also, r2=x2+y2=(2)2+12=2+1=3
⇒r=3 (Taking positive value only)
And, tanθ=xy=21
⇒θ=tan−1(21)=0.6154 rad
So, cylindrical coordinates are (r,θ,z)=(3,0.6154,1)
Comments