(i)
A ( 1 , 4 , 2 ) , B ( 3 , 2 , 4 ) a n d C ( 5 , 0 , 6 ) A(1, 4, 2), B(3, 2, 4) and C(5, 0, 6) A ( 1 , 4 , 2 ) , B ( 3 , 2 , 4 ) an d C ( 5 , 0 , 6 )
The three point A,B,C are collinear if the direction ratio of AB,BC,AC are proportional.
Now,
A ( 1 , 4 , 2 ) , B ( 3 , 2 , 4 ) A(1, 4, 2), B(3, 2, 4) A ( 1 , 4 , 2 ) , B ( 3 , 2 , 4 )
Direction Ratio = 3 − 1 , 2 − 4 , 4 − 2 =3-1,2-4,4-2 = 3 − 1 , 2 − 4 , 4 − 2
= ( 2 , − 2 , 2 ) =
(2,-2,2) = ( 2 , − 2 , 2 )
s o , a 1 = 2 , b 1 = − 2 , c 1 = 2 so, a_1=2,b_1=-2,c_1=2 so , a 1 = 2 , b 1 = − 2 , c 1 = 2
Now,
B ( 3 , 2 , 4 ) , C ( 5 , 0 , 6 ) B(3, 2, 4) , C(5, 0, 6) B ( 3 , 2 , 4 ) , C ( 5 , 0 , 6 )
Direction Ratio= = = ( 5 − 3 , 0 − 2 , 6 − 4 ) (
5-3,0-2,6-4) ( 5 − 3 , 0 − 2 , 6 − 4 )
= ( 2 , − 2 , 2 ) =(2,-2,2) = ( 2 , − 2 , 2 )
So,
a 2 = 2 , b 2 = − 2 , c 2 = 2 a_2=2,b_2=-2,c_2=2 a 2 = 2 , b 2 = − 2 , c 2 = 2
ratios,
a 2 / a 1 = 2 / 2 = 1 a_2/a_1=2/2=1 a 2 / a 1 = 2/2 = 1
b 2 / b 1 = − 2 / − 2 = 1 b_2/b_1=-2/-2=1 b 2 / b 1 = − 2/ − 2 = 1
c 2 / c 1 = 2 / 2 = 1 c_2/c_1=2/2=1 c 2 / c 1 = 2/2 = 1
Therefore A,B,C are collinear
Hence proved.
(ii)
P ( 2 , 1 , 1 ) , Q ( 1 , 3 , 2 ) , R ( 2 , 1 , 3 ) a n d S ( 3 , 2 , 0 ) P(2, 1, 1), Q(1, 3, 2), R(2, 1, 3) and S(3, 2, 0) P ( 2 , 1 , 1 ) , Q ( 1 , 3 , 2 ) , R ( 2 , 1 , 3 ) an d S ( 3 , 2 , 0 )
So, let
O P → = 2 i ^ + j ^ + k ^ \overrightarrow{OP}=2{\hat{i} +\hat{j}}+\hat{k} OP = 2 i ^ + j ^ + k ^
O Q → = i ^ + 3 j ^ + 2 k ^ \overrightarrow{OQ}={\hat{i} +3\hat{j}}+2\hat{k} OQ = i ^ + 3 j ^ + 2 k ^
O R → = 2 i ^ + j ^ + 3 k ^ \overrightarrow{OR}=2{\hat{i} +\hat{j}}+3\hat{k} OR = 2 i ^ + j ^ + 3 k ^
O S → = i ^ + 2 j ^ \overrightarrow{OS}={\hat{i} +2\hat{j}} OS = i ^ + 2 j ^
now,
P Q → = O Q − O P = i ^ + 2 j ^ + k ^ \overrightarrow{PQ}=OQ-OP={\hat{i} +2\hat{j}}+\hat{k} PQ = OQ − OP = i ^ + 2 j ^ + k ^
P R → = O E − O P = 2 k ^ \overrightarrow{PR}=OE-OP=2\hat{k} PR = OE − OP = 2 k ^
P S → = i ^ + j ^ − k ^ \overrightarrow{PS}={\hat{i} +\hat{j}}-\hat{k} PS = i ^ + j ^ − k ^
Solving aboove three equations we get
∣ P Q , P R , P S ∣ = 0 |PQ,PR,PS|=0 ∣ PQ , PR , PS ∣ = 0
Hence the given four points are coplanar.
Hence proved .
Comments