(i)
A(1,4,2),B(3,2,4)andC(5,0,6)
The three point A,B,C are collinear if the direction ratio of AB,BC,AC are proportional.
Now,
A(1,4,2),B(3,2,4)
Direction Ratio =3−1,2−4,4−2
=(2,−2,2)
so,a1=2,b1=−2,c1=2
Now,
B(3,2,4),C(5,0,6)
Direction Ratio= (5−3,0−2,6−4)
=(2,−2,2)
So,
a2=2,b2=−2,c2=2
ratios,
a2/a1=2/2=1
b2/b1=−2/−2=1
c2/c1=2/2=1
Therefore A,B,C are collinear
Hence proved.
(ii)
P(2,1,1),Q(1,3,2),R(2,1,3)andS(3,2,0)
So, let
OP=2i^+j^+k^
OQ=i^+3j^+2k^
OR=2i^+j^+3k^
OS=i^+2j^
now,
PQ=OQ−OP=i^+2j^+k^
PR=OE−OP=2k^
PS=i^+j^−k^
Solving aboove three equations we get
∣PQ,PR,PS∣=0
Hence the given four points are coplanar.
Hence proved .
Comments