Prove that
(i) the three points A(1, 4, 2), B(3, 2, 4) and C(5, 0, 6) are collinear,
(ii) the four points P(2, ;1, 1), Q(1, 3, ;2), R((2, 1, ;3) and S(3, 2, 0) are coplanar.
(i)
"A(1, 4, 2), B(3, 2, 4) and C(5, 0, 6)"
The three point A,B,C are collinear if the direction ratio of AB,BC,AC are proportional.
Now,
"A(1, 4, 2), B(3, 2, 4)"
Direction Ratio "=3-1,2-4,4-2"
"= \n(2,-2,2)"
"so, a_1=2,b_1=-2,c_1=2"
Now,
"B(3, 2, 4) , C(5, 0, 6)"
Direction Ratio"=" "(\n5-3,0-2,6-4)"
"=(2,-2,2)"
So,
"a_2=2,b_2=-2,c_2=2"
ratios,
"a_2\/a_1=2\/2=1"
"b_2\/b_1=-2\/-2=1"
"c_2\/c_1=2\/2=1"
Therefore A,B,C are collinear
Hence proved.
(ii)
"P(2, 1, 1), Q(1, 3, 2), R(2, 1, 3) and S(3, 2, 0)"
So, let
"\\overrightarrow{OP}=2{\\hat{i} +\\hat{j}}+\\hat{k}"
"\\overrightarrow{OQ}={\\hat{i} +3\\hat{j}}+2\\hat{k}"
"\\overrightarrow{OR}=2{\\hat{i} +\\hat{j}}+3\\hat{k}"
"\\overrightarrow{OS}={\\hat{i} +2\\hat{j}}"
now,
"\\overrightarrow{PQ}=OQ-OP={\\hat{i} +2\\hat{j}}+\\hat{k}"
"\\overrightarrow{PR}=OE-OP=2\\hat{k}"
"\\overrightarrow{PS}={\\hat{i} +\\hat{j}}-\\hat{k}"
Solving aboove three equations we get
"|PQ,PR,PS|=0"
Hence the given four points are coplanar.
Hence proved .
Comments
Leave a comment