Answer to Question #159686 in Analytic Geometry for Muhammed

Question #159686

7. If a = i + 3j j k, b = 2i + 4j j 2k and c = =i + 2j + 4k, find a number λ such that

d = a + b + λc is parallel to the yz-plane.



1
Expert's answer
2021-02-01T11:19:16-0500

Here we have vectors a=iˆ+3jˆ+kˆ\vec{a}= \text{\^{i}}+3\text{\^{j}}+\text{\^{k}} , b=2iˆ+4jˆ+2kˆ\vec{b}=2\text{\^{i}}+4\text{\^{j}}+2\text{\^{k}} and c=iˆ+2jˆ+4kˆ\vec{c}=\text{\^{i}}+2\text{\^{j}}+4\text{\^{k}}


So, we calculate d=a+b+λc\vec{d}=\vec{a}+\vec{b}+\lambda\vec{c}



d=a+b+λc=iˆ+3jˆ+kˆ+2iˆ+4jˆ+2kˆ+λiˆ+2λjˆ+4λkˆ=(3+λ)iˆ+(7+2λ)jˆ+(3+4λ)kˆ\vec{d}=\vec{a}+\vec{b}+\lambda\vec{c}\\ =\text{\^{i}}+3\text{\^{j}}+\text{\^{k}}+2\text{\^{i}}+4\text{\^{j}}+2\text{\^{k}}+\lambda\text{\^{i}}+2\lambda\text{\^{j}}+4\lambda\text{\^{k}}\\ =(3+\lambda)\text{\^{i}}+(7+2\lambda)\text{\^{j}}+(3+4\lambda)\text{\^{k}}



So, we have d=(3+λ)iˆ+(7+2λ)jˆ+(3+4λ)kˆ\vec{d}=(3+\lambda)\text{\^{i}}+(7+2\lambda)\text{\^{j}}+(3+4\lambda)\text{\^{k}}


Now, we know that d\vec{d} parallel to yzyz plane. This means that d\vec{d} is \perp to xx axis.


So, here we can equate d(iˆ)=0\vec{d}\cdot(\text{\^{i}})=0 [As the vector representation of xx plane is iˆ\text{\^{i}} ]


So,



diˆ=0[((3+λ)iˆ+(7+2λ)jˆ+(3+4λ)kˆ][iˆ]=03+λ=0λ=3\vec{d}\cdot\text{\^{i}}=0\\ \Rightarrow [((3+\lambda)\text{\^{i}}+(7+ 2\lambda)\text{\^{j}}+(3+4\lambda)\text{\^{k}}]\cdot[\text{\^{i}}]=0\\ \Rightarrow 3+\lambda=0\\ \Rightarrow \lambda=-3

So, value of λ\lambda such that it is parallel to yzyz plane is



λ=3\fcolorbox{black}{aqua}{$\textcolor{black}{\lambda=-3}$}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment