( i ) I f t h r e e d i r e c t i o n r a t i o s o f A B a n d B C a r e p r o p o r t i o n a l , \left(i\right)\:If\:three\:direction\:ratios\:of\:AB\:and\:BC\:are\:proportional, ( i ) I f t h ree d i rec t i o n r a t i os o f A B an d BC a re p ro p or t i o na l ,
t h e n t h e p o i n t s A , B a n d C a r e c o l l i n e a r . then\:the\:points\:A,\:B\:and\:C\:are\:collinear. t h e n t h e p o in t s A , B an d C a re co ll in e a r .
D i r e c t i o n r a t i o s a r e : Direction\:ratios\:are:\: D i rec t i o n r a t i os a re :
A B ⃗ = B − A \vec{AB}\:=B-A A B = B − A
= ( 3 − 1 ) , ( 2 − 4 ) , ( 4 − 2 ) =\left(3-1\right),\left(2-4\right),\left(4-2\right) = ( 3 − 1 ) , ( 2 − 4 ) , ( 4 − 2 )
= 2 , − 2 , 2 =2,-2,2 = 2 , − 2 , 2
s o a 1 = 2 b 1 = − 2 c 1 = 2 so\:a_1=2\:\:b_1=-2\:c_1=2 so a 1 = 2 b 1 = − 2 c 1 = 2
B C ⃗ = C − B \vec{BC}=C-B BC = C − B
= ( 5 − 3 ) , ( 0 − 2 ) , ( 6 − 4 ) =\left(5-3\right),\left(0-2\right),\left(6-4\right) = ( 5 − 3 ) , ( 0 − 2 ) , ( 6 − 4 )
= 2 , − 2 , 2 =2,-2,2 = 2 , − 2 , 2
s o a 2 = 2 , b 2 = − 2 c 2 = 2 so\:a_2=2,\:b_2=-2\:c_2=2 so a 2 = 2 , b 2 = − 2 c 2 = 2
a 2 a 1 = 2 2 = 1 \frac{a_2}{a_1}=\frac{2}{2}=1\: a 1 a 2 = 2 2 = 1
b 2 b 1 = − 2 − 2 = 1 \frac{b_2}{b_1}=\frac{-2}{-2}=1 b 1 b 2 = − 2 − 2 = 1
c 2 c 1 = 2 2 = 1 \frac{c_2}{c_1}=\frac{2}{2}=1 c 1 c 2 = 2 2 = 1
s i n c e a 2 a 1 = b 2 b 1 = c 2 c 1 = 1 since\:\frac{a_2}{a_1}=\frac{b_2}{b_1}=\frac{c_2}{c_1}=1 s in ce a 1 a 2 = b 1 b 2 = c 1 c 2 = 1
T h e r e f o r e A , B a n d C a r e c o l l i n e a r . Therefore\:A,B\:and\:C\:are\:collinear. T h ere f ore A , B an d C a re co ll in e a r .
( i i ) G i v e n t h a t p o i n t s A ( 2 , 2 , 1 ) , Q ( 1 , 3 , 2 ) , R ( 2 , 1 , 3 ) a n d S ( 3 , 2 , 0 ) \left(ii\right)Given\:that\:points\:A\left(2,2,1\right),\:Q\left(1,3,2\right),\:R\left(2,1,3\right)and\:S\left(3,2,0\right) ( ii ) G i v e n t ha t p o in t s A ( 2 , 2 , 1 ) , Q ( 1 , 3 , 2 ) , R ( 2 , 1 , 3 ) an d S ( 3 , 2 , 0 )
A Q ⃗ = Q − A = ( − i + 2 j + k ) \vec{AQ}=Q-A=\left(-i+2j+k\right) A Q = Q − A = ( − i + 2 j + k )
A R ⃗ = R − A = ( 2 k ) \vec{AR}=R-A=\left(2k\right) A R = R − A = ( 2 k )
A S ⃗ = S − A = ( i + j − k ) \vec{AS}=S-A=\left(i+j-k\right) A S = S − A = ( i + j − k )
T h e r e f o r e ∣ A Q ⃗ A R ⃗ A S ⃗ ∣ = ( − 1 2 1 0 0 2 1 1 − 1 ) Therefore\:\left|\vec{AQ}\:\vec{AR}\:\vec{AS}\right|=\begin{pmatrix}-1&2&1\\ 0&0&2\\ 1&1&-1\end{pmatrix} T h ere f ore ∣ ∣ A Q A R A S ∣ ∣ = ⎝ ⎛ − 1 0 1 2 0 1 1 2 − 1 ⎠ ⎞
= − 1 ( 0 − 2 ) + 2 ( 2 − 0 ) + 1 ( 0 − 0 ) =\:-1\left(0-2\right)+2\left(2-0\right)+1\left(0-0\right) = − 1 ( 0 − 2 ) + 2 ( 2 − 0 ) + 1 ( 0 − 0 )
= 2 + 4 + 0 = 6 =2+4+0=6\: = 2 + 4 + 0 = 6
H e n c e , t h e p o i n t s a r e n o t c o p l a n a r . \:Hence,\:the\:points\:are\:not\:coplanar. He n ce , t h e p o in t s a re n o t co pl ana r .
Comments