Prove that
(i) the three points A(1, 4, 2), B(3, 2, 4) and C(5, 0, 6) are collinear,
(ii) the four points P(2, ;1, 1), Q(1, 3, ;2), R((2, 1, ;3) and S(3, 2, 0) are coplanar
"\\left(i\\right)\\:If\\:three\\:direction\\:ratios\\:of\\:AB\\:and\\:BC\\:are\\:proportional,"
"then\\:the\\:points\\:A,\\:B\\:and\\:C\\:are\\:collinear."
"Direction\\:ratios\\:are:\\:"
"\\vec{AB}\\:=B-A"
"=\\left(3-1\\right),\\left(2-4\\right),\\left(4-2\\right)"
"=2,-2,2"
"so\\:a_1=2\\:\\:b_1=-2\\:c_1=2"
"\\vec{BC}=C-B"
"=\\left(5-3\\right),\\left(0-2\\right),\\left(6-4\\right)"
"=2,-2,2"
"so\\:a_2=2,\\:b_2=-2\\:c_2=2"
"\\frac{a_2}{a_1}=\\frac{2}{2}=1\\:"
"\\frac{b_2}{b_1}=\\frac{-2}{-2}=1"
"\\frac{c_2}{c_1}=\\frac{2}{2}=1"
"since\\:\\frac{a_2}{a_1}=\\frac{b_2}{b_1}=\\frac{c_2}{c_1}=1"
"Therefore\\:A,B\\:and\\:C\\:are\\:collinear."
"\\left(ii\\right)Given\\:that\\:points\\:A\\left(2,2,1\\right),\\:Q\\left(1,3,2\\right),\\:R\\left(2,1,3\\right)and\\:S\\left(3,2,0\\right)"
"\\vec{AQ}=Q-A=\\left(-i+2j+k\\right)"
"\\vec{AR}=R-A=\\left(2k\\right)"
"\\vec{AS}=S-A=\\left(i+j-k\\right)"
"Therefore\\:\\left|\\vec{AQ}\\:\\vec{AR}\\:\\vec{AS}\\right|=\\begin{pmatrix}-1&2&1\\\\ 0&0&2\\\\ 1&1&-1\\end{pmatrix}"
"=\\:-1\\left(0-2\\right)+2\\left(2-0\\right)+1\\left(0-0\\right)"
"=2+4+0=6\\:"
"\\:Hence,\\:the\\:points\\:are\\:not\\:coplanar."
Comments
Leave a comment