Question #159914

Prove that

(i) the three points A(1, 4, 2), B(3, 2, 4) and C(5, 0, 6) are collinear,

(ii) the four points P(2, ;1, 1), Q(1, 3, ;2), R((2, 1, ;3) and S(3, 2, 0) are coplanar


1
Expert's answer
2021-02-02T01:26:32-0500

(i)IfthreedirectionratiosofABandBCareproportional,\left(i\right)\:If\:three\:direction\:ratios\:of\:AB\:and\:BC\:are\:proportional,

thenthepointsA,BandCarecollinear.then\:the\:points\:A,\:B\:and\:C\:are\:collinear.

Directionratiosare:Direction\:ratios\:are:\:

AB=BA\vec{AB}\:=B-A

=(31),(24),(42)=\left(3-1\right),\left(2-4\right),\left(4-2\right)

=2,2,2=2,-2,2

soa1=2b1=2c1=2so\:a_1=2\:\:b_1=-2\:c_1=2

BC=CB\vec{BC}=C-B

=(53),(02),(64)=\left(5-3\right),\left(0-2\right),\left(6-4\right)

=2,2,2=2,-2,2

soa2=2,b2=2c2=2so\:a_2=2,\:b_2=-2\:c_2=2

a2a1=22=1\frac{a_2}{a_1}=\frac{2}{2}=1\:

b2b1=22=1\frac{b_2}{b_1}=\frac{-2}{-2}=1

c2c1=22=1\frac{c_2}{c_1}=\frac{2}{2}=1

sincea2a1=b2b1=c2c1=1since\:\frac{a_2}{a_1}=\frac{b_2}{b_1}=\frac{c_2}{c_1}=1

ThereforeA,BandCarecollinear.Therefore\:A,B\:and\:C\:are\:collinear.

(ii)GiventhatpointsA(2,2,1),Q(1,3,2),R(2,1,3)andS(3,2,0)\left(ii\right)Given\:that\:points\:A\left(2,2,1\right),\:Q\left(1,3,2\right),\:R\left(2,1,3\right)and\:S\left(3,2,0\right)

AQ=QA=(i+2j+k)\vec{AQ}=Q-A=\left(-i+2j+k\right)

AR=RA=(2k)\vec{AR}=R-A=\left(2k\right)

AS=SA=(i+jk)\vec{AS}=S-A=\left(i+j-k\right)

ThereforeAQARAS=(121002111)Therefore\:\left|\vec{AQ}\:\vec{AR}\:\vec{AS}\right|=\begin{pmatrix}-1&2&1\\ 0&0&2\\ 1&1&-1\end{pmatrix}

=1(02)+2(20)+1(00)=\:-1\left(0-2\right)+2\left(2-0\right)+1\left(0-0\right)

=2+4+0=6=2+4+0=6\:

Hence,thepointsarenotcoplanar.\:Hence,\:the\:points\:are\:not\:coplanar.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS