(i)IfthreedirectionratiosofABandBCareproportional,
thenthepointsA,BandCarecollinear.
Directionratiosare:
AB=B−A
=(3−1),(2−4),(4−2)
=2,−2,2
soa1=2b1=−2c1=2
BC=C−B
=(5−3),(0−2),(6−4)
=2,−2,2
soa2=2,b2=−2c2=2
a1a2=22=1
b1b2=−2−2=1
c1c2=22=1
sincea1a2=b1b2=c1c2=1
ThereforeA,BandCarecollinear.
(ii)GiventhatpointsA(2,2,1),Q(1,3,2),R(2,1,3)andS(3,2,0)
AQ=Q−A=(−i+2j+k)
AR=R−A=(2k)
AS=S−A=(i+j−k)
Therefore∣∣AQARAS∣∣=⎝⎛−10120112−1⎠⎞
=−1(0−2)+2(2−0)+1(0−0)
=2+4+0=6
Hence,thepointsarenotcoplanar.
Comments