Question #157138

ABCD is a square and P, Q are the midpoints of BC, CD respectively. If AP = a and AQ = b, find in terms of a and b, the directed line segments (i) AB, (ii) AD, (iii) BD and (iv) AC. 


1
Expert's answer
2021-01-29T14:04:40-0500

Let's place the coordinate center at the point A and direct the x and y axis along AB and AD. If the square side is ll, then the coordinates of points are : A=(0,0),B=(l,0),C=(l,l),D=(0,l),P=(l,l2),Q=(l2,l)A=(0,0), B=(l,0), C=(l,l), D=(0,l), P=(l,\frac{l}{2}),Q=(\frac{l}{2},l). Therefore we have a=(l,l2),b=(l2,l)a=(l,\frac{l}{2}), b=(\frac{l}{2}, l).

  1. AB=αa+βb\vec{AB }= \alpha a+\beta b, {αl+βl/2=lαl/2+βl=0\begin{cases} \alpha l + \beta l/2 = l \\ \alpha l/2 + \beta l = 0 \end{cases}, by solving we find AB=43a23b\vec{AB} = \frac{4}{3}a-\frac{2}{3}b
  2. AD=αa+βb\vec{AD }= \alpha a+\beta b, {αl+βl/2=0αl/2+βl=l\begin{cases} \alpha l + \beta l/2 = 0 \\ \alpha l/2 + \beta l = l \end{cases}, by solving we find AD=23a+43b\vec{AD} = -\frac{2}{3}a+\frac{4}{3}b
  3. BD=ADAB=2b2a\vec{BD}=\vec{AD}-\vec{AB} = 2b-2a
  4. AC=AB+BC=AB+AD=23(a+b)\vec{AC} = \vec{AB}+\vec{BC} = \vec{AB}+\vec{AD} = \frac{2}{3}(a+b), as BC=AD=(0,l)BC = AD=(0,l).

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS