ABCD is a square and P,Q are the midpoint of BC,CD respectively. If AP=a and AQ=b,find in terms of a and b,the directed line segments of AB,AD,BD and AC
We have that
a=AB+BC/2.......(1)b=AD+DC/2.......(2)a=AB+BC/2.......(1)\\ b=AD+DC/2.......(2)a=AB+BC/2.......(1)b=AD+DC/2.......(2)
But, AD=BC and AB=DC
So,
a=DC+BC/2b=BC+DC/2a=DC+BC/2\\ b=BC+DC/2a=DC+BC/2b=BC+DC/2
Solving the simultaneous equation, we have that:
DC=23(2a−b),BC=23(2b−a)DC=\frac{2}{3}(2a-b), BC=\frac{2}{3}(2b-a)DC=32(2a−b),BC=32(2b−a)
Also,
AB=DC=23(2a−b)AD=BC=23(2b−a)AB=DC=\frac{2}{3}(2a-b)\\ AD=BC=\frac{2}{3}(2b-a)AB=DC=32(2a−b)AD=BC=32(2b−a)
AC=AB+BC=23(a+b)BD=AD−AB=2(b−a)AC=AB+BC=\frac{2}{3}(a+b)\\ BD=AD-AB=2(b-a)AC=AB+BC=32(a+b)BD=AD−AB=2(b−a)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments