What is the magnitude of the resultant of the forces F1=-3i+2j-k, F2=2i-j+3k and F3=3i+j-k measured in dynes ?
F1⃗=−3i+2j−k\vec{F_1}=-3i+2j-kF1=−3i+2j−k
F2⃗=2i−j+3k\vec{F_2}=2i-j+3kF2=2i−j+3k
F1⃗=3i+j−k\vec{F_1}=3i+j-kF1=3i+j−k
the resultant force is the vector sum of all forces\text{the resultant force is the vector sum of all forces}the resultant force is the vector sum of all forces
F⃗=F1⃗+F2⃗+F3⃗\vec{F}=\vec{F_1}+\vec{F_2}+\vec{F_3}F=F1+F2+F3
F⃗=−3i+2j−k+2i−j+3k+3i+j−k\vec{F}= -3i+2j-k+2i-j+3k+3i+j-kF=−3i+2j−k+2i−j+3k+3i+j−k
F⃗=2i+2j+k\vec{F}=2i+2j+kF=2i+2j+k
∣F⃗∣=22+22+1=3|\vec{F}|=\sqrt{2^2+2^2+1}=3∣F∣=22+22+1=3
the default force is measured in newtons\text{the default force is measured in newtons}the default force is measured in newtons
1J=105dyn1J=10^5dyn1J=105dyn
Answer:F⃗=2i+2j+k ;∣F⃗∣=3∗105dyn\vec{F}=2i+2j+k \ ;|\vec{F}|=3*10^5dynF=2i+2j+k ;∣F∣=3∗105dyn
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment