F 1 ⃗ = − 3 i + 2 j − k \vec{F_1}=-3i+2j-k F 1 = − 3 i + 2 j − k
F 2 ⃗ = 2 i − j + 3 k \vec{F_2}=2i-j+3k F 2 = 2 i − j + 3 k
F 1 ⃗ = 3 i + j − k \vec{F_1}=3i+j-k F 1 = 3 i + j − k
the resultant force is the vector sum of all forces \text{the resultant force is the vector sum of all forces} the resultant force is the vector sum of all forces
F ⃗ = F 1 ⃗ + F 2 ⃗ + F 3 ⃗ \vec{F}=\vec{F_1}+\vec{F_2}+\vec{F_3} F = F 1 + F 2 + F 3
F ⃗ = − 3 i + 2 j − k + 2 i − j + 3 k + 3 i + j − k \vec{F}= -3i+2j-k+2i-j+3k+3i+j-k F = − 3 i + 2 j − k + 2 i − j + 3 k + 3 i + j − k
F ⃗ = 2 i + 2 j + k \vec{F}=2i+2j+k F = 2 i + 2 j + k
∣ F ⃗ ∣ = 2 2 + 2 2 + 1 = 3 |\vec{F}|=\sqrt{2^2+2^2+1}=3 ∣ F ∣ = 2 2 + 2 2 + 1 = 3
the default force is measured in newtons \text{the default force is measured in newtons} the default force is measured in newtons
1 J = 1 0 5 d y n 1J=10^5dyn 1 J = 1 0 5 d y n
Answer: F ⃗ = 2 i + 2 j + k ; ∣ F ⃗ ∣ = 3 ∗ 1 0 5 d y n \vec{F}=2i+2j+k \ ;|\vec{F}|=3*10^5dyn F = 2 i + 2 j + k ; ∣ F ∣ = 3 ∗ 1 0 5 d y n
Comments