"\\vec{r_1} = \\hat{i} + \\hat{j}+\\hat{k}" , "\\vec{r_2} =3 \\hat{i} +2 \\hat{j}+\\hat{k}" and "\\vec{r_3} = 2\\hat{i} - \\hat{j}"
"\\vec{F_1} = 3\\hat{i} -3 \\hat{j}+4\\hat{k}" , "\\vec{F_2} = 3\\hat{i} + 4\\hat{j}+3\\hat{k}" and "\\vec{F_3} =-4 \\hat{i}-2 \\hat{j}+m\\hat{k}"
"\\vec{F_0} = 2\\hat{i}- \\hat{j}+8\\hat{k}" and "\\vec{r_0} = 2\\hat{i} - \\hat{j}+2\\hat{k}"
(i) "\\vec{F_0}=\\vec{F_1}+\\vec{F_2}+\\vec{F_3}"
taking only z component.
"8 = 4+3+m \\implies m=1"
(ii) Moment of force "F_2" , "\\vec{r} \\times \\vec{F_2} =(\\vec{r_2}-\\vec{r_0} )\\times \\vec{F_2} = ( \\hat{i} +3 \\hat{j}-\\hat{k}) \\times (3 \\hat{i} +4 \\hat{j}+3\\hat{k}) = 13 \\hat{i} -6 \\hat{j}-5\\hat{k}"
(iii) Line of action is the line along which force act. Since force is acting along the line "\\vec{r} = 2\\hat{i}-\\hat{j}+2\\hat{k}" . So unit vector in that direction is "\\hat{r}=\\frac{( 2\\hat{i}- \\hat{j}+2\\hat{k})}{3}"
(iv) Couple is formed when two parallel force act in opposite direction. Here there no two forces are parallel. So couple is zero.
Comments
Leave a comment