Suppose that the sphere "O_1" passes though the circle "O_2" (x2+y2+z2–6x+z+6=0, x–y=0)
Then its equation is:
"x^2 + y^2 + z^2 -6x+z+6-k(x-y) = 0"
where k is any real number.
"x^2-x(k+6)+y^2+ky+z^2+z+6=0"
"x^2-2x(\\frac{k}{2}+3)+(\\frac{k}{2}+3)^2+y^2+2y\\frac{k}{2}+(\\frac{k}{2})^2+z^2+2z\\frac{1}{2}+(\\frac{1}{2})^2=(\\frac{k}{2}+3)^2+(\\frac{k}{2})^2+(\\frac{1}{2})^2"
"(x-(\\frac{k}{2}+3))^2+(y+\\frac{k}{2})^2+(z+\\frac{1}{2})^2=\\frac{k^2}{2}+3k+3\\frac{1}{4}"
Its center is "O_1(\\frac{k}{2}+3, -\\frac{k}{2}, -\\frac{1}{2})" and the radius is "R_1=\\sqrt{\\frac{k^2}{2}+3k+3\\frac{1}{4}}"
Since the sphere touches the plane b (z = 0), then the distance from the point O1 to the plane is equal to the radius R1. Point-plane distance is determined by the formula:
Plane P: ax + by + cz + d = 0;
Point O: (x0, y0, z0);
If a = 0, b = 0, c = 1, d = 0, x0 = k/2 + 3, y0 = -k/2, z0 = -1/2, then:
"d=\\frac{|-\\frac{1}{2}\\cdot1|}{\\sqrt1}=\\frac{1}{2}"
from R1 = d:
"\\sqrt{\\frac{k^2}{2}+3k+3\\frac{1}{4}}=1"
"k^2+6k+4\\frac{1}{2}=0"
"k=-3\\pm\\frac{3\\sqrt2}{2}"
The equations of two spheres are:
"(x-(\\frac{k}{2}+3))^2+(y+\\frac{k}{2})^2+(z+\\frac{1}{2})^2=\\frac{k^2}{2}+3k+3\\frac{1}{4}"
1) "k=-3+\\frac{3\\sqrt2}{2}" :
"(x-(\\frac{-3+\\frac{3\\sqrt2}{2}}{2}+3))^2+(y+\\frac{-3+\\frac{3\\sqrt2}{2}}{2})^2+(z+\\frac{1}{2})^2=1"
"(x-\\frac{3\\sqrt2+6}{4})^2+(y+\\frac{3\\sqrt2-6}{4})^2+(z+\\frac{1}{2})^2=1"
2) "k=-3-\\frac{3\\sqrt2}{2}" :
"(x-(\\frac{-3-\\frac{3\\sqrt2}{2}}{2}+3))^2+(y+\\frac{-3-\\frac{3\\sqrt2}{2}}{2})^2+(z+\\frac{1}{2})^2=1"
"(x-\\frac{6-3\\sqrt2}{4})^2+(y-\\frac{6+3\\sqrt2}{4})^2+(z+\\frac{1}{2})^2=1"
Answer:
"(x-\\frac{3\\sqrt2+6}{4})^2+(y+\\frac{3\\sqrt2-6}{4})^2+(z+\\frac{1}{2})^2=1"
"(x-\\frac{6-3\\sqrt2}{4})^2+(y-\\frac{6+3\\sqrt2}{4})^2+(z+\\frac{1}{2})^2=1"
Comments
Leave a comment