Question #146839
Find the equations of the spheres which pass through the circle x^2+y^2+z^2-6x+z+6=0, x-y=0 and touch the plane z=0
1
Expert's answer
2020-11-30T21:14:25-0500

Suppose that the sphere O1O_1 passes though the circle O2O_2 (x2+y2+z2–6x+z+6=0, x–y=0)

Then its equation is:

x2+y2+z26x+z+6k(xy)=0x^2 + y^2 + z^2 -6x+z+6-k(x-y) = 0

where k is any real number.

x2x(k+6)+y2+ky+z2+z+6=0x^2-x(k+6)+y^2+ky+z^2+z+6=0

x22x(k2+3)+(k2+3)2+y2+2yk2+(k2)2+z2+2z12+(12)2=(k2+3)2+(k2)2+(12)2x^2-2x(\frac{k}{2}+3)+(\frac{k}{2}+3)^2+y^2+2y\frac{k}{2}+(\frac{k}{2})^2+z^2+2z\frac{1}{2}+(\frac{1}{2})^2=(\frac{k}{2}+3)^2+(\frac{k}{2})^2+(\frac{1}{2})^2

(x(k2+3))2+(y+k2)2+(z+12)2=k22+3k+314(x-(\frac{k}{2}+3))^2+(y+\frac{k}{2})^2+(z+\frac{1}{2})^2=\frac{k^2}{2}+3k+3\frac{1}{4}

Its center is O1(k2+3,k2,12)O_1(\frac{k}{2}+3, -\frac{k}{2}, -\frac{1}{2}) and the radius is R1=k22+3k+314R_1=\sqrt{\frac{k^2}{2}+3k+3\frac{1}{4}}

Since the sphere touches the plane b (z = 0), then the distance from the point O1 to the plane is equal to the radius R1. Point-plane distance is determined by the formula:

Plane P: ax + by + cz + d = 0;

Point O: (x0, y0, z0);


d=ax0+by0+cz0+da2+b2+c2d=\frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}


If a = 0, b = 0, c = 1, d = 0, x0 = k/2 + 3, y0 = -k/2, z0 = -1/2, then:

d=1211=12d=\frac{|-\frac{1}{2}\cdot1|}{\sqrt1}=\frac{1}{2}

from R1 = d:

k22+3k+314=1\sqrt{\frac{k^2}{2}+3k+3\frac{1}{4}}=1

k2+6k+412=0k^2+6k+4\frac{1}{2}=0

k=3±322k=-3\pm\frac{3\sqrt2}{2}

The equations of two spheres are:

(x(k2+3))2+(y+k2)2+(z+12)2=k22+3k+314(x-(\frac{k}{2}+3))^2+(y+\frac{k}{2})^2+(z+\frac{1}{2})^2=\frac{k^2}{2}+3k+3\frac{1}{4}

1) k=3+322k=-3+\frac{3\sqrt2}{2} :

(x(3+3222+3))2+(y+3+3222)2+(z+12)2=1(x-(\frac{-3+\frac{3\sqrt2}{2}}{2}+3))^2+(y+\frac{-3+\frac{3\sqrt2}{2}}{2})^2+(z+\frac{1}{2})^2=1

(x32+64)2+(y+3264)2+(z+12)2=1(x-\frac{3\sqrt2+6}{4})^2+(y+\frac{3\sqrt2-6}{4})^2+(z+\frac{1}{2})^2=1

2) k=3322k=-3-\frac{3\sqrt2}{2} :

(x(33222+3))2+(y+33222)2+(z+12)2=1(x-(\frac{-3-\frac{3\sqrt2}{2}}{2}+3))^2+(y+\frac{-3-\frac{3\sqrt2}{2}}{2})^2+(z+\frac{1}{2})^2=1

(x6324)2+(y6+324)2+(z+12)2=1(x-\frac{6-3\sqrt2}{4})^2+(y-\frac{6+3\sqrt2}{4})^2+(z+\frac{1}{2})^2=1


Answer:

(x32+64)2+(y+3264)2+(z+12)2=1(x-\frac{3\sqrt2+6}{4})^2+(y+\frac{3\sqrt2-6}{4})^2+(z+\frac{1}{2})^2=1

(x6324)2+(y6+324)2+(z+12)2=1(x-\frac{6-3\sqrt2}{4})^2+(y-\frac{6+3\sqrt2}{4})^2+(z+\frac{1}{2})^2=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS