Suppose that the sphere O 1 O_1 O 1 passes though the circle O 2 O_2 O 2 (x2 +y2 +z2 –6x+z+6=0, x–y=0)
Then its equation is:
x 2 + y 2 + z 2 − 6 x + z + 6 − k ( x − y ) = 0 x^2 + y^2 + z^2 -6x+z+6-k(x-y) = 0 x 2 + y 2 + z 2 − 6 x + z + 6 − k ( x − y ) = 0
where k is any real number.
x 2 − x ( k + 6 ) + y 2 + k y + z 2 + z + 6 = 0 x^2-x(k+6)+y^2+ky+z^2+z+6=0 x 2 − x ( k + 6 ) + y 2 + k y + z 2 + z + 6 = 0
x 2 − 2 x ( k 2 + 3 ) + ( k 2 + 3 ) 2 + y 2 + 2 y k 2 + ( k 2 ) 2 + z 2 + 2 z 1 2 + ( 1 2 ) 2 = ( k 2 + 3 ) 2 + ( k 2 ) 2 + ( 1 2 ) 2 x^2-2x(\frac{k}{2}+3)+(\frac{k}{2}+3)^2+y^2+2y\frac{k}{2}+(\frac{k}{2})^2+z^2+2z\frac{1}{2}+(\frac{1}{2})^2=(\frac{k}{2}+3)^2+(\frac{k}{2})^2+(\frac{1}{2})^2 x 2 − 2 x ( 2 k + 3 ) + ( 2 k + 3 ) 2 + y 2 + 2 y 2 k + ( 2 k ) 2 + z 2 + 2 z 2 1 + ( 2 1 ) 2 = ( 2 k + 3 ) 2 + ( 2 k ) 2 + ( 2 1 ) 2
( x − ( k 2 + 3 ) ) 2 + ( y + k 2 ) 2 + ( z + 1 2 ) 2 = k 2 2 + 3 k + 3 1 4 (x-(\frac{k}{2}+3))^2+(y+\frac{k}{2})^2+(z+\frac{1}{2})^2=\frac{k^2}{2}+3k+3\frac{1}{4} ( x − ( 2 k + 3 ) ) 2 + ( y + 2 k ) 2 + ( z + 2 1 ) 2 = 2 k 2 + 3 k + 3 4 1
Its center is O 1 ( k 2 + 3 , − k 2 , − 1 2 ) O_1(\frac{k}{2}+3, -\frac{k}{2}, -\frac{1}{2}) O 1 ( 2 k + 3 , − 2 k , − 2 1 ) and the radius is R 1 = k 2 2 + 3 k + 3 1 4 R_1=\sqrt{\frac{k^2}{2}+3k+3\frac{1}{4}} R 1 = 2 k 2 + 3 k + 3 4 1
Since the sphere touches the plane b (z = 0), then the distance from the point O1 to the plane is equal to the radius R1 . Point-plane distance is determined by the formula:
Plane P: ax + by + cz + d = 0;
Point O: (x0 , y0 , z0 );
d = ∣ a x 0 + b y 0 + c z 0 + d ∣ a 2 + b 2 + c 2 d=\frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}} d = a 2 + b 2 + c 2 ∣ a x 0 + b y 0 + c z 0 + d ∣
If a = 0, b = 0, c = 1, d = 0, x0 = k/2 + 3, y0 = -k/2, z0 = -1/2, then:
d = ∣ − 1 2 ⋅ 1 ∣ 1 = 1 2 d=\frac{|-\frac{1}{2}\cdot1|}{\sqrt1}=\frac{1}{2} d = 1 ∣ − 2 1 ⋅ 1∣ = 2 1
from R1 = d:
k 2 2 + 3 k + 3 1 4 = 1 \sqrt{\frac{k^2}{2}+3k+3\frac{1}{4}}=1 2 k 2 + 3 k + 3 4 1 = 1
k 2 + 6 k + 4 1 2 = 0 k^2+6k+4\frac{1}{2}=0 k 2 + 6 k + 4 2 1 = 0
k = − 3 ± 3 2 2 k=-3\pm\frac{3\sqrt2}{2} k = − 3 ± 2 3 2
The equations of two spheres are:
( x − ( k 2 + 3 ) ) 2 + ( y + k 2 ) 2 + ( z + 1 2 ) 2 = k 2 2 + 3 k + 3 1 4 (x-(\frac{k}{2}+3))^2+(y+\frac{k}{2})^2+(z+\frac{1}{2})^2=\frac{k^2}{2}+3k+3\frac{1}{4} ( x − ( 2 k + 3 ) ) 2 + ( y + 2 k ) 2 + ( z + 2 1 ) 2 = 2 k 2 + 3 k + 3 4 1
1) k = − 3 + 3 2 2 k=-3+\frac{3\sqrt2}{2} k = − 3 + 2 3 2 :
( x − ( − 3 + 3 2 2 2 + 3 ) ) 2 + ( y + − 3 + 3 2 2 2 ) 2 + ( z + 1 2 ) 2 = 1 (x-(\frac{-3+\frac{3\sqrt2}{2}}{2}+3))^2+(y+\frac{-3+\frac{3\sqrt2}{2}}{2})^2+(z+\frac{1}{2})^2=1 ( x − ( 2 − 3 + 2 3 2 + 3 ) ) 2 + ( y + 2 − 3 + 2 3 2 ) 2 + ( z + 2 1 ) 2 = 1
( x − 3 2 + 6 4 ) 2 + ( y + 3 2 − 6 4 ) 2 + ( z + 1 2 ) 2 = 1 (x-\frac{3\sqrt2+6}{4})^2+(y+\frac{3\sqrt2-6}{4})^2+(z+\frac{1}{2})^2=1 ( x − 4 3 2 + 6 ) 2 + ( y + 4 3 2 − 6 ) 2 + ( z + 2 1 ) 2 = 1
2) k = − 3 − 3 2 2 k=-3-\frac{3\sqrt2}{2} k = − 3 − 2 3 2 :
( x − ( − 3 − 3 2 2 2 + 3 ) ) 2 + ( y + − 3 − 3 2 2 2 ) 2 + ( z + 1 2 ) 2 = 1 (x-(\frac{-3-\frac{3\sqrt2}{2}}{2}+3))^2+(y+\frac{-3-\frac{3\sqrt2}{2}}{2})^2+(z+\frac{1}{2})^2=1 ( x − ( 2 − 3 − 2 3 2 + 3 ) ) 2 + ( y + 2 − 3 − 2 3 2 ) 2 + ( z + 2 1 ) 2 = 1
( x − 6 − 3 2 4 ) 2 + ( y − 6 + 3 2 4 ) 2 + ( z + 1 2 ) 2 = 1 (x-\frac{6-3\sqrt2}{4})^2+(y-\frac{6+3\sqrt2}{4})^2+(z+\frac{1}{2})^2=1 ( x − 4 6 − 3 2 ) 2 + ( y − 4 6 + 3 2 ) 2 + ( z + 2 1 ) 2 = 1
Answer:
( x − 3 2 + 6 4 ) 2 + ( y + 3 2 − 6 4 ) 2 + ( z + 1 2 ) 2 = 1 (x-\frac{3\sqrt2+6}{4})^2+(y+\frac{3\sqrt2-6}{4})^2+(z+\frac{1}{2})^2=1 ( x − 4 3 2 + 6 ) 2 + ( y + 4 3 2 − 6 ) 2 + ( z + 2 1 ) 2 = 1
( x − 6 − 3 2 4 ) 2 + ( y − 6 + 3 2 4 ) 2 + ( z + 1 2 ) 2 = 1 (x-\frac{6-3\sqrt2}{4})^2+(y-\frac{6+3\sqrt2}{4})^2+(z+\frac{1}{2})^2=1 ( x − 4 6 − 3 2 ) 2 + ( y − 4 6 + 3 2 ) 2 + ( z + 2 1 ) 2 = 1
Comments