"\\text{Let } F_1\\text{ and } F_2 \\text{ be foci of a hyperbola and let M be}\\\\\n\\text{an arbitrary point of a hyperbola. Then we have:}\\\\\n|MF_2|-|MF_1|=2a\\text{ where } a=\\text{const}.\\\\\n|F_1F_2|=2c\\text{ where } c=\\text{const}.\\\\\n\\text{We denote }c^2-a^2=b^2.\\\\\n\\text{Then we have:}\\\\\n\\begin{cases}\n2b\\cdot2a=168,\\\\\n\\frac{b}{a}=\\frac{24}{7}.\n\\end{cases}\\\\\na=\\frac{7}{24}b\\\\\n2b\\cdot2\\frac{7}{24}b=168\\\\\n\\frac{7b^2}{6}=168\\\\\nb^2=\\frac{6\\cdot 168}{7}\\\\\nb^2=144\\\\\na^2=(\\frac{7}{24})^2b^2\\\\\na^2=(\\frac{7}{24})^2\\frac{6\\cdot 168}{7}\\\\\na^2=12.25\\\\\nc^2=a^2+b^2\\\\\nc^2=12.25+144\\\\\nc^2=156.25\\\\\nc=12.5\\\\\n\\text{Then } F_1(12.5,15) \\text{ and } F_2(-12.5,15)."
Comments
Leave a comment