Let F1 and F2 be foci of a hyperbola and let M bean arbitrary point of a hyperbola. Then we have:∣MF2∣−∣MF1∣=2a where a=const.∣F1F2∣=2c where c=const.We denote c2−a2=b2.Then we have:{2b⋅2a=168,ab=724.a=247b2b⋅2247b=16867b2=168b2=76⋅168b2=144a2=(247)2b2a2=(247)276⋅168a2=12.25c2=a2+b2c2=12.25+144c2=156.25c=12.5Then F1(12.5,15) and F2(−12.5,15).
Comments
Leave a comment