Require to show that the given co-planar points A(2,3,2), B(4,7,6), C(1,2,3), and D(-1,-2,-1)form a parallelogram.
Find the lengths of the sides AB, BC, CD and AD of the quadrilateral "ABCD"
Now
"AB=\\sqrt{(4-2)^2+(7-3)^2+(6-2)^2}=\\sqrt{4+16+16}=6"
"BC=\\sqrt{(1-4)^2+(2-7)^2+(3-6)^2}=\\sqrt{9+25+9}=\\sqrt{43}"
"CD=\\sqrt{(-1-1)^2+(-2-2)^2+(-1-3)^2}=\\sqrt{4+16+16}=6"
"AD=\\sqrt{(-1-2)^2+(-2-3)^2+(-1-2)^2}=\\sqrt{9+25+9}=\\sqrt{43}"
Observe that "AB=CD" and "BC=AD"
That is opposite sides of the quadrilateral "ABCD" are equal.
That is the quadrilateral "ABCD" is a parallelogram.
Therefore, the given co-planar points form a parallelogram.
Comments
Leave a comment