Question #146837
Find the new equation of straight line 2x+y=5 after rotating the axes through 45°.
1
Expert's answer
2020-11-29T16:33:35-0500

We have to rotate the axes to 45045^0. Let say in anti-clockwise manner.

So,

x=xcosθysinθx=x\cos \theta-y \sin \theta , y=xsinθ+ycosθy=x \sin \theta+y \cos \theta .


    x=xcos450ysin450=22x22y\implies x=x \cos 45^0-y \sin 45^0=\frac{\sqrt2}{2}x - \frac{\sqrt2}{2}y

Also,

y=xsin450+ycos450=22x+22yy=x\sin 45^0 + y \cos 45^0= \frac{\sqrt2}{2}x + \frac{\sqrt2}{2}y


Put the new values of xx and yy into the straight line equation.


    2(22x22y)+(22x+22y)=5    x2y2+22x+22y=5    322x22y=5\implies 2(\frac{\sqrt2}{2}x - \frac{\sqrt2}{2}y)+(\frac{\sqrt2}{2}x + \frac{\sqrt2}{2}y)=5\\ \implies x\sqrt2-y\sqrt2+\frac{\sqrt2}{2}x + \frac{\sqrt2}{2}y=5\\ \implies \frac{3\sqrt2}{2}x - \frac{\sqrt2}{2}y=5


The new equation of the line is 322x22y=5.\frac{3\sqrt2}{2}x - \frac{\sqrt2}{2}y=5.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS