We have to rotate the axes to "45^0". Let say in anti-clockwise manner.
So,
"x=x\\cos \\theta-y \\sin \\theta" , "y=x \\sin \\theta+y \\cos \\theta" .
"\\implies x=x \\cos 45^0-y \\sin 45^0=\\frac{\\sqrt2}{2}x - \\frac{\\sqrt2}{2}y"
Also,
"y=x\\sin 45^0 + y \\cos 45^0= \\frac{\\sqrt2}{2}x + \\frac{\\sqrt2}{2}y"
Put the new values of "x" and "y" into the straight line equation.
"\\implies 2(\\frac{\\sqrt2}{2}x - \\frac{\\sqrt2}{2}y)+(\\frac{\\sqrt2}{2}x + \\frac{\\sqrt2}{2}y)=5\\\\\n\\implies x\\sqrt2-y\\sqrt2+\\frac{\\sqrt2}{2}x + \\frac{\\sqrt2}{2}y=5\\\\\n\\implies \\frac{3\\sqrt2}{2}x - \\frac{\\sqrt2}{2}y=5"
The new equation of the line is "\\frac{3\\sqrt2}{2}x - \\frac{\\sqrt2}{2}y=5."
Comments
Leave a comment