a(x−x0)+b(y−y0)=0 where n⃗ normal line vectora(x-x_0)+b(y-y_0)=0\text{ where } \vec n\text{ normal line vector}a(x−x0)+b(y−y0)=0 where n normal line vector
(x0,y0)=Q(1,2)(x_0,y_0)=Q(1,2)(x0,y0)=Q(1,2)
n⃗=PQ⃗=(1−(−2),2−3)=(3,−1)\vec n=\vec {PQ}=(1-(-2),2-3)=(3,-1)n=PQ=(1−(−2),2−3)=(3,−1)
3(x−1)−1∗(y−2)=03(x-1)-1*(y-2)=03(x−1)−1∗(y−2)=0
3x−y−1=03x-y-1=03x−y−1=0
Answer: 3x−y−1=03x-y-1=03x−y−1=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment