Question #141968

write an equation of the line that passes through point P and parallel to the line with the given equation P(0,-1), y = -2x + 3


M=



B=



P(-7,-4),y=16


M=


B=


P(-2,1),10x+4y=-8


M=

B=


p(0,0)y=-9x-1

M=

B=





1
Expert's answer
2020-11-03T17:13:05-0500

By the law of parallelism,two parallel lines havethe same gradient(a)P(0,1),y=2x+3m=2y(1)x0=2y+1=2xy=2x1m=2B=1(b)P(7,4),y=16m=0y(4)x(7)=0y+4=0y=4m=0B=4(c)P(2,1),10x+4y=84y=810xy=25x2m=52y1x(2)=52y1=52(x+2)2y2=5x102y+5x=8y=45x2m=52B=4(d)p(0,0),y=9x1m=9y0x0=9y=9xm=9B=0\displaystyle \textsf{By the law of parallelism,}\\ \textsf{two parallel lines have}\\ \textsf{the same gradient}\\ (a)\\ P(0,-1), \, y = -2x + 3\\ m = -2\\ \frac{y - (-1)}{x - 0} = -2\\ y + 1 = -2x\\ y = -2x - 1\\ m = -2\\ B = -1\\ (b)\\P(-7,-4),\, y=16\\ m = 0\\ \frac{y - (-4)}{x - (-7)} = 0\\ y + 4 = 0\\ y = -4\\ m = 0\\ B = -4\\ (c)\\ P(-2,1),\, 10x+4y=-8\\ 4y = 8 - 10x\\ y = 2 - \frac{5x}{2}\\ m = -\frac{5}{2}\\ \frac{y - 1}{x - (-2)} = -\frac{5}{2}\\ y - 1 = -\frac{5}{2}(x + 2)\\ 2y - 2= -5x - 10\\ 2y + 5x = -8\\ y = -4 - \frac{5x}{2}\\ m = -\frac{5}{2}\\ B = -4\\ (d)\\ p(0,0), \, y=-9x-1\\ m = -9\\ \frac{y - 0}{x - 0} = -9\\ y = -9x\\ m = -9\\ B = 0\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS