x1=y2=z3 direction vector a⃗(1,2,3)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\text{ direction vector }\vec{a}(1,2,3)1x=2y=3z direction vector a(1,2,3)
axis X direction vector i⃗(1,0,0)\text{axis }X\text{ direction vector }\vec{i}(1,0,0)axis X direction vector i(1,0,0)
The desired angle is the angle between straight lines or their direction vectors\text{The desired angle is the angle between straight lines or their direction vectors}The desired angle is the angle between straight lines or their direction vectors
cosφ=a⃗∗i⃗∣a⃗∣∗∣i⃗∣=11∗1+4+9\cos{\varphi}=\frac{\vec{a}*\vec{i}}{\vert{\vec{a}}\vert*\vert{\vec{i}}\vert}=\frac{1}{1*\sqrt{1+4+9}}cosφ=∣a∣∗∣i∣a∗i=1∗1+4+91
cosφ=113;φ≈74°\cos{\varphi}=\frac{1}{\sqrt{13}};{\varphi}\approx74\degreecosφ=131;φ≈74°
Answer:cosφ=113;φ≈74°cos{\varphi}=\frac{1}{\sqrt{13}};{\varphi}\approx74\degreecosφ=131;φ≈74°
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments