x 1 = y 2 = z 3 direction vector a ⃗ ( 1 , 2 , 3 ) \frac{x}{1}=\frac{y}{2}=\frac{z}{3}\text{ direction vector }\vec{a}(1,2,3) 1 x = 2 y = 3 z direction vector a ( 1 , 2 , 3 )
axis X direction vector i ⃗ ( 1 , 0 , 0 ) \text{axis }X\text{ direction vector }\vec{i}(1,0,0) axis X direction vector i ( 1 , 0 , 0 )
The desired angle is the angle between straight lines or their direction vectors \text{The desired angle is the angle between straight lines or their direction vectors} The desired angle is the angle between straight lines or their direction vectors
cos φ = a ⃗ ∗ i ⃗ ∣ a ⃗ ∣ ∗ ∣ i ⃗ ∣ = 1 1 ∗ 1 + 4 + 9 \cos{\varphi}=\frac{\vec{a}*\vec{i}}{\vert{\vec{a}}\vert*\vert{\vec{i}}\vert}=\frac{1}{1*\sqrt{1+4+9}} cos φ = ∣ a ∣ ∗ ∣ i ∣ a ∗ i = 1 ∗ 1 + 4 + 9 1
cos φ = 1 13 ; φ ≈ 74 ° \cos{\varphi}=\frac{1}{\sqrt{13}};{\varphi}\approx74\degree cos φ = 13 1 ; φ ≈ 74°
Answer: c o s φ = 1 13 ; φ ≈ 74 ° cos{\varphi}=\frac{1}{\sqrt{13}};{\varphi}\approx74\degree cos φ = 13 1 ; φ ≈ 74°
Comments