Conicoid equation is:"\\dfrac{x^2}{6^2}+\\dfrac{y^2}{3^2}-\\dfrac{z^2}{2^2}=x^2-1"
Axis X: "\\dfrac{x^2}{6^2}+\\dfrac{0^2}{3^2}-\\dfrac{0^2}{2^2}=x^2-1"
"x^2(1- \\dfrac{1}{6^2})-1=0"
"x_1=- \\dfrac{6}{\\sqrt35}"
"x_2=\\dfrac{6}{\\sqrt35}"
Axis Y:"\\dfrac{0}{6^2}+\\dfrac{y^2}{3^2}-\\dfrac{0^2}{2^2}=0^2-1"
"\\dfrac{y^2}{3^2}=-1"
So this conicoid hasn't any common points with axis Y
Axis Z:"-\\dfrac{z^2}{2^2}=0^2-1"
"\\dfrac{z^2}{2^2}=1"
"z^2=2^2"
"z_1=2"
"z_2=-2"
Comments
Leave a comment