Conicoid equation is:x262+y232−z222=x2−1\dfrac{x^2}{6^2}+\dfrac{y^2}{3^2}-\dfrac{z^2}{2^2}=x^2-162x2+32y2−22z2=x2−1
Axis X: x262+0232−0222=x2−1\dfrac{x^2}{6^2}+\dfrac{0^2}{3^2}-\dfrac{0^2}{2^2}=x^2-162x2+3202−2202=x2−1
x2(1−162)−1=0x^2(1- \dfrac{1}{6^2})-1=0x2(1−621)−1=0
x1=−635x_1=- \dfrac{6}{\sqrt35}x1=−356
x2=635x_2=\dfrac{6}{\sqrt35}x2=356
Axis Y:062+y232−0222=02−1\dfrac{0}{6^2}+\dfrac{y^2}{3^2}-\dfrac{0^2}{2^2}=0^2-1620+32y2−2202=02−1
y232=−1\dfrac{y^2}{3^2}=-132y2=−1
So this conicoid hasn't any common points with axis Y
Axis Z:−z222=02−1-\dfrac{z^2}{2^2}=0^2-1−22z2=02−1
z222=1\dfrac{z^2}{2^2}=122z2=1
z2=22z^2=2^2z2=22
z1=2z_1=2z1=2
z2=−2z_2=-2z2=−2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments