Suppose u = (u1; u2; u3) :
Prove that
u x u = u21+ u22+ u23
Let u⃗=u1i^+u2j^+u3k^\vec{u} = u_1\hat{i} + u_2\hat{j}+u_3\hat{k}u=u1i^+u2j^+u3k^
Then u.u=(u1i^+u2j^+u3k^).(u1i^+u2j^+u3k^)=u12+u22+u32u.u = (u_1\hat{i} + u_2\hat{j}+u_3\hat{k}).(u_1\hat{i} + u_2\hat{j}+u_3\hat{k}) = u_1^2 + u_2^2+u_3^2u.u=(u1i^+u2j^+u3k^).(u1i^+u2j^+u3k^)=u12+u22+u32
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment