calculate the vector
P 1 P 2 ‾ = ( P 2 x − P 1 x ; P 2 y − P 1 y ) = ( − 3 − 2 ; − 2 − 7 ) = ( − 5 ; − 9 ) \overline{P_1P_2} = (P_{2x} - P_{1x};P_{2y} - P_{1y} ) = (-3-2;-2-7) =
(-5;-9) P 1 P 2 = ( P 2 x − P 1 x ; P 2 y − P 1 y ) = ( − 3 − 2 ; − 2 − 7 ) = ( − 5 ; − 9 )
let ax + by + c =0 is equation of the line
then direction vector is (b;-a) and coincides with the vector P 1 P 2 ‾ \overline{P_1P_2} P 1 P 2
hence b = -5
-a = -9
a = 9
9x- 5y + c = 0 equation of the line
h ( a x + b x + c = 0 , ( x 0 , y 0 ) ) = ∣ a x 0 + b y 0 + c ∣ a 2 + b 2 h(ax+bx+c=0,(x_0,y_0)) = \frac{|ax_0+by_0+c|} {\sqrt{a^2+b^2}} h ( a x + b x + c = 0 , ( x 0 , y 0 )) = a 2 + b 2 ∣ a x 0 + b y 0 + c ∣
where h is the distance from point to line
in our case h is equal to 2 and the coordinates of the point are equal to zero since they are the origin of coordinates
∣ a x 0 + b y 0 + c ∣ a 2 + b 2 = ∣ c ∣ 9 2 + 5 2 = ∣ c ∣ 106 \frac{|ax_0+by_0+c|} {\sqrt{a^2+b^2}} = \frac{|c|} {\sqrt{9^2+5^2}} = \frac{|c|} {\sqrt{106}} a 2 + b 2 ∣ a x 0 + b y 0 + c ∣ = 9 2 + 5 2 ∣ c ∣ = 106 ∣ c ∣
hence
c = 2 106 c = 2\sqrt{106} c = 2 106 or c = − 2 106 c = -2\sqrt{106} c = − 2 106 and equation of the line
9 x − 5 y + 2 106 = 0 9x -5y + 2\sqrt{106} = 0 9 x − 5 y + 2 106 = 0
or 9 x − 5 y − 2 106 = 0 9x -5y - 2\sqrt{106} = 0 9 x − 5 y − 2 106 = 0
Answer: 9 x − 5 y + 2 106 = 0 9x -5y + 2\sqrt{106} = 0 9 x − 5 y + 2 106 = 0 or 9 x − 5 y − 2 106 = 0 9x -5y - 2\sqrt{106} = 0 9 x − 5 y − 2 106 = 0
Comments