Distance of line from origin d=2
Since the required line is parallel to the line formed by joining P 1 ( 2 , 7 ) a n d P 2 ( − 3 , − 2 ) P_1(2,7) and P_2(-3,-2) P 1 ( 2 , 7 ) an d P 2 ( − 3 , − 2 ) ,
There slope must be equal
Let m be the slope of required line
m = − 2 − 7 − 3 − 2 m=\frac{-2-7}{-3-2} m = − 3 − 2 − 2 − 7
= − 9 − 5 =\frac{-9}{-5} = − 5 − 9
so m=9 5 \frac{9}{5} 5 9
Let the equation of required line be
y = m x + c y=mx+c y = m x + c
y = 9 5 x + c y=\frac{9}{5}x+c y = 5 9 x + c
Rearranging the equation as,
9 x − 5 y + 5 c = 0 9x-5y+5c=0 9 x − 5 y + 5 c = 0
Distance from origin is given by,
d=∣ 9 × 0 + 0 × − 5 + 5 c ∣ 9 2 + ( − 5 ) 2 \frac{|9\times 0+0\times -5+5c|}{\sqrt{9^2+(-5)^2}} 9 2 + ( − 5 ) 2 ∣9 × 0 + 0 ×− 5 + 5 c ∣
2=5 c 106 \frac{5c}{\sqrt{106}} 106 5 c
5c=2 106 2\sqrt{106} 2 106
c=0.4106 \sqrt{106} 106
So the equation of required line is
9x-5y+2 106 \sqrt{106} 106 =0
Comments