Let the meeting point of the perpendicular lines be ( a , b ) (a, b) ( a , b )
/ O P / = ( a 2 + b 2 ) = 7 /OP/=\sqrt{(a^2 +b^2)} =7 / OP / = ( a 2 + b 2 ) = 7 ..... (i)
a2 +b2 =49
2x+3y=1 ;y=− ( 2 3 ) x + 1 3 -(\frac{2}{3}) x+\frac{1} {3} − ( 3 2 ) x + 3 1
Gradient =− ( 2 3 ) -(\frac{2}{3}) − ( 3 2 )
For perpendicular lines,the product of Gradient I and gradient II hence gradient II =3 2 \frac{3}{2} 2 3
G r a d i e n t = Δ y Δ x Gradient =\frac{\Delta y} {\Delta x} G r a d i e n t = Δ x Δ y
3 2 = b − 0 a − 0 \frac{3}{2} =\frac{b-0} {a-0} 2 3 = a − 0 b − 0
2b=3a .... (ii)
Substituting (ii) in (i) ;
a 2 + ( 3 a 2 ) 2 = 49 a^2 +(\frac{3a}{2} )^2 =49 a 2 + ( 2 3 a ) 2 = 49
4 a 2 + 9 a 2 = 196 4a^2+9a^2=196 4 a 2 + 9 a 2 = 196
a =4 or − - − 4; b=6 or − - − 6.
To get the equation, we take the point (4,6) and the gradient 3 2 \frac{3}{2} 2 3
3 2 = y − 6 x − 4 \frac{3}{2} =\frac{y-6}{x-4} 2 3 = x − 4 y − 6
2y-12=3x -12
2y=3x
When a=− - − 4 and b=− - − 6
3 2 = y − ( − 6 ) x − ( − 4 ) \frac{3} {2} =\frac{y-(-6)}{x-(-4)} 2 3 = x − ( − 4 ) y − ( − 6 )
3x+ + + 12=2y+ + + 12
2y=3x
Comments