Let the meeting point of the perpendicular lines be (a,b)(a, b)(a,b)
/OP/=(a2+b2)=7/OP/=\sqrt{(a^2 +b^2)} =7/OP/=(a2+b2)=7 ..... (i)
a2+b2=49
2x+3y=1 ;y=−(23)x+13-(\frac{2}{3}) x+\frac{1} {3}−(32)x+31
Gradient =−(23)-(\frac{2}{3})−(32)
For perpendicular lines,the product of Gradient I and gradient II hence gradient II =32\frac{3}{2}23
Gradient=ΔyΔxGradient =\frac{\Delta y} {\Delta x}Gradient=ΔxΔy
32=b−0a−0\frac{3}{2} =\frac{b-0} {a-0}23=a−0b−0
2b=3a .... (ii)
Substituting (ii) in (i) ;
a2+(3a2)2=49a^2 +(\frac{3a}{2} )^2 =49a2+(23a)2=49
4a2+9a2=1964a^2+9a^2=1964a2+9a2=196
a =4 or −-−4; b=6 or −-− 6.
To get the equation, we take the point (4,6) and the gradient 32\frac{3}{2}23
32=y−6x−4\frac{3}{2} =\frac{y-6}{x-4}23=x−4y−6
2y-12=3x -12
2y=3x
When a=−-− 4 and b=−-−6
32=y−(−6)x−(−4)\frac{3} {2} =\frac{y-(-6)}{x-(-4)}23=x−(−4)y−(−6)
3x+++ 12=2y+++12
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments