Let the meeting point of the perpendicular lines be "(a, b)"
"\/OP\/=\\sqrt{(a^2 +b^2)} =7" ..... (i)
a2+b2=49
2x+3y=1 ;y="-(\\frac{2}{3}) x+\\frac{1} {3}"
Gradient ="-(\\frac{2}{3})"
For perpendicular lines,the product of Gradient I and gradient II hence gradient II ="\\frac{3}{2}"
"Gradient =\\frac{\\Delta y} {\\Delta x}"
"\\frac{3}{2} =\\frac{b-0} {a-0}"
2b=3a .... (ii)
Substituting (ii) in (i) ;
"a^2 +(\\frac{3a}{2} )^2 =49"
"4a^2+9a^2=196"
a =4 or "-"4; b=6 or "-" 6.
To get the equation, we take the point (4,6) and the gradient "\\frac{3}{2}"
"\\frac{3}{2} =\\frac{y-6}{x-4}"
2y-12=3x -12
2y=3x
When a="-" 4 and b="-"6
"\\frac{3} {2} =\\frac{y-(-6)}{x-(-4)}"
3x"+" 12=2y"+"12
2y=3x
Comments
Leave a comment