Answer to Question #129236 in Analytic Geometry for Sym

Question #129236
Express
(2,π/6 in rectangular coordinates

Express r=1+2cos∅ from polar to cartesian form
1
Expert's answer
2020-08-27T16:00:04-0400

I)Express (2,π6)(2,\frac{\pi}{6}) in rectangular coordinates:

x=rcosθ,x=rcos\theta,

y=rsinθ;y=rsin\theta;

r=2, θ=π6r=2,\space \theta=\frac{\pi}{6}

x=2cos(π6),x=2*cos(\frac{\pi}{6}),

y=2sin(π6).y=2*sin(\frac{\pi}{6}).

x=232=3,x=2*\frac{\sqrt{3}}{2}=\sqrt{3},

y=212=1.y=2*\frac{1}{2}=1.

Answer:x=3, y=1.x=\sqrt{3},\space y=1.

II)Express r=1+2cosθr=1+2cos\theta from polar to cartesian form.

x=rcosθ,x=rcos\theta,

y=sinθ.y=sin\theta.

r=x2+y2r=\sqrt{x^2+y^2}

r=1+2cosθr=1+2cos\theta

2cosθ=r12cos\theta=r-1

2(xr)=r12(\frac{x}{r})=r-1

2x=r2r2x=r^2-r

2x=(x2+y2)x2+y22x=(x^2+y^2)-\sqrt{x^2+y^2}

Answer:

x2+y2=2x+x2+y2.x^2+y^2=2x+\sqrt{x^2+y^2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment