The triangle STV has its vertices at s ( 2,5).The angle TVS is a right angle and the equation of VS is 2x+3y -1=0
Find the distance of S from the line VT
if ST has a gradient of 1/3,find the angle between the lines ST and TV
"2\\cdot 2+3\\cdot 5-1=18\\neq0 \\Rightarrow (2,5)\\not\\in VS :\\quad 2x+3y-1=0 \\Rightarrow T=T(2,5)\\\\\nST:\\quad y=\\frac{1}{3}x+b, \\quad T\\in ST: \\quad y=\\frac{1}{3}x+b \\Rightarrow b=\\frac{13}{3}\\\\\nS=\\begin{cases} 2x+3y-1=0\\\\y=\\frac{1}{3}x+\\frac{13}{3} \\end{cases} \\Rightarrow S=S(-4,3).\\\\\nTV: \\quad y-5=\\frac{-1}{\\frac{-2}{3}}(x-2)=\\frac{3}{2}(x-2).\\\\\ncos(\\alpha)=\\frac{\\frac{1}{3}\\cdot\\frac{3}{2}+(-1)\\cdot(-1)}{\\sqrt{\\frac{1}{9}+1}\\cdot \n\\sqrt{\\frac{9}{4}+1}}=\\frac{9}{\\sqrt{130}} \\Rightarrow\\alpha=arccos(\\frac{9}{\\sqrt{130}}).\\\\\n\\rho(S,TV)=\\frac{|1.5\\cdot(-4)-3+2|}{\\sqrt{\\frac{9}{4}+1}}=\\frac{14}{\\sqrt{13}};"
Comments
Leave a comment