2 ⋅ 2 + 3 ⋅ 5 − 1 = 18 ≠ 0 ⇒ ( 2 , 5 ) ∉ V S : 2 x + 3 y − 1 = 0 ⇒ T = T ( 2 , 5 ) S T : y = 1 3 x + b , T ∈ S T : y = 1 3 x + b ⇒ b = 13 3 S = { 2 x + 3 y − 1 = 0 y = 1 3 x + 13 3 ⇒ S = S ( − 4 , 3 ) . T V : y − 5 = − 1 − 2 3 ( x − 2 ) = 3 2 ( x − 2 ) . c o s ( α ) = 1 3 ⋅ 3 2 + ( − 1 ) ⋅ ( − 1 ) 1 9 + 1 ⋅ 9 4 + 1 = 9 130 ⇒ α = a r c c o s ( 9 130 ) . ρ ( S , T V ) = ∣ 1.5 ⋅ ( − 4 ) − 3 + 2 ∣ 9 4 + 1 = 14 13 ; 2\cdot 2+3\cdot 5-1=18\neq0 \Rightarrow (2,5)\not\in VS :\quad 2x+3y-1=0 \Rightarrow T=T(2,5)\\
ST:\quad y=\frac{1}{3}x+b, \quad T\in ST: \quad y=\frac{1}{3}x+b \Rightarrow b=\frac{13}{3}\\
S=\begin{cases} 2x+3y-1=0\\y=\frac{1}{3}x+\frac{13}{3} \end{cases} \Rightarrow S=S(-4,3).\\
TV: \quad y-5=\frac{-1}{\frac{-2}{3}}(x-2)=\frac{3}{2}(x-2).\\
cos(\alpha)=\frac{\frac{1}{3}\cdot\frac{3}{2}+(-1)\cdot(-1)}{\sqrt{\frac{1}{9}+1}\cdot
\sqrt{\frac{9}{4}+1}}=\frac{9}{\sqrt{130}} \Rightarrow\alpha=arccos(\frac{9}{\sqrt{130}}).\\
\rho(S,TV)=\frac{|1.5\cdot(-4)-3+2|}{\sqrt{\frac{9}{4}+1}}=\frac{14}{\sqrt{13}}; 2 ⋅ 2 + 3 ⋅ 5 − 1 = 18 = 0 ⇒ ( 2 , 5 ) ∈ V S : 2 x + 3 y − 1 = 0 ⇒ T = T ( 2 , 5 ) ST : y = 3 1 x + b , T ∈ ST : y = 3 1 x + b ⇒ b = 3 13 S = { 2 x + 3 y − 1 = 0 y = 3 1 x + 3 13 ⇒ S = S ( − 4 , 3 ) . T V : y − 5 = 3 − 2 − 1 ( x − 2 ) = 2 3 ( x − 2 ) . cos ( α ) = 9 1 + 1 ⋅ 4 9 + 1 3 1 ⋅ 2 3 + ( − 1 ) ⋅ ( − 1 ) = 130 9 ⇒ α = a rccos ( 130 9 ) . ρ ( S , T V ) = 4 9 + 1 ∣1.5 ⋅ ( − 4 ) − 3 + 2∣ = 13 14 ;
Comments