16 x 2 − 9 y 2 + 64 x − 90 y = 305 16 ( x 2 + 4 x ) − 9 ( y 2 + 10 y ) = 305 16 ( x 2 + 4 x + 4 ) − 9 ( y 2 + 10 y + 25 ) = 305 + 64 − 225 16x^2-9y^2+64x-90y=305\\
16(x^2+4x)-9(y^2+10y)=305\\
16(x^2+4x+4)-9(y^2+10y+25)=305+64-225 16 x 2 − 9 y 2 + 64 x − 90 y = 305 16 ( x 2 + 4 x ) − 9 ( y 2 + 10 y ) = 305 16 ( x 2 + 4 x + 4 ) − 9 ( y 2 + 10 y + 25 ) = 305 + 64 − 225
16 ( x + 2 ) 2 − 9 ( y + 5 ) 2 = 144 ( x + 2 ) 2 9 − ( y + 5 ) 2 16 = 1 16(x+2)^2-9(y+5)^2=144\\
\frac{(x+2)^2}{9}-\frac{(y+5)^2}{16}=1 16 ( x + 2 ) 2 − 9 ( y + 5 ) 2 = 144 9 ( x + 2 ) 2 − 16 ( y + 5 ) 2 = 1
h=-2 , k=5,
a = 9 = 3 b = 16 = 4 c = a 2 + b 2 = 9 + 16 = 25 = 5 a=\sqrt9=3\\
b=\sqrt{16}=4\\
c=\sqrt{a^2+b^2}=\sqrt{9+16}=\sqrt{25}=5 a = 9 = 3 b = 16 = 4 c = a 2 + b 2 = 9 + 16 = 25 = 5
Centre: (-2,-5),
vertices: (-5,5) and (1,-5),
foci: (-7,-5) and (3,-5),
asymptotes:
y = − 5 ± 4 ( x + 2 ) 3 y=-5\pm4\frac{(x+2)}{3} y = − 5 ± 4 3 ( x + 2 )
Length of latus rectrum =2 b 2 a \frac{2b^2}{a}\\ a 2 b 2
= 2 ∗ 16 3 = 32 3 = 10.66 =\frac{2*16}{3}\\
=\frac{32}{3}\\
=10.66 = 3 2 ∗ 16 = 3 32 = 10.66
Comments