F(x)=(x+1)/(x-1)
a formula of the derivative f(x)=1*(x-1)-(x+1)*1/(x-1)2=-2/(x-1)2
the derivative of the function is equal to the tangent of the angle of inclination
f(x0)=-1/3=-2/(x0-1)2,
1/6=(x0-1)2,
x01-1=√6 , x01=1+√6,
x02-1=-√6, x02=1-√6,
F(x01)=(2+√6)/(√6) =1+√2/√3,
F(x02)=(2-√6)/(-√6)=1-√2/√3.
Equations of the tangent y=f(x0)(x-x0)+F(x0),
y1=-1/3(x-1-√6)+1+√2/√3,
y2=-1/3(x-1+√6)+1-√2/√3.
Equations of the normal y=-1/f(x0)(x-x0)+F(x0),
y1=3(x-1-√6)+1+√2/√3,
y2=3(x-1+√6)+1-√2/√3.
Comments
Leave a comment