If we have an equation A x 2 + 2 B x y + C y 2 + 2 D x + 2 E y + F = 0 , Ax^2+2Bxy+Cy^2+2Dx+2Ey+F=0, A x 2 + 2 B x y + C y 2 + 2 D x + 2 E y + F = 0 , we should convert it into a canonical equation A x 1 ~ 2 + C 1 y ~ 2 + F 1 = 0. A\tilde{x_1}^2+C_1\tilde{y}^2+F_1=0. A x 1 ~ 2 + C 1 y ~ 2 + F 1 = 0.
Let S = A + C , δ = ∣ A B B C ∣ , Δ = ∣ A B D B C E D E F ∣ . S=A+C, \;\;\; \delta = \begin{vmatrix}
A & B \\
B & C
\end{vmatrix}, \;\;\; \Delta = \begin{vmatrix}
A &B & D \\
B &C & E \\
D&E&F
\end{vmatrix}. S = A + C , δ = ∣ ∣ A B B C ∣ ∣ , Δ = ∣ ∣ A B D B C E D E F ∣ ∣ . In our case A = 57 , B = 7 3 , C = 43 , F = − 576. A=57, \;\; B=7\sqrt{3}, \;\; C=43, \;\; F=-576. A = 57 , B = 7 3 , C = 43 , F = − 576. Therefore, S = 100 , δ = 2304 , Δ = − 1327104. S=100, \;\; \delta = 2304, \;\; \Delta = -1327104. S = 100 , δ = 2304 , Δ = − 1327104.
Next, we solve the system
{ A 1 + C 1 = S , A 1 C 1 = δ , A 1 C 1 F 1 = Δ . A 1 = 36 , C 1 = 64 , F 1 = − 576 or A 1 = 64 , C 1 = 36 , F 1 = − 576. \begin{cases}
A_1+C_1 = S, \\
A_1C_1=\delta, \\
A_1C_1F_1 = \Delta.
\end{cases}
\\
A_1 = 36, C_1= 64, F_1 = -576 \;\;\; \text{or} \;\;\; A_1 = 64, C_1= 36, F_1 = -576. ⎩ ⎨ ⎧ A 1 + C 1 = S , A 1 C 1 = δ , A 1 C 1 F 1 = Δ. A 1 = 36 , C 1 = 64 , F 1 = − 576 or A 1 = 64 , C 1 = 36 , F 1 = − 576.
So the canonical equation will have form
36 x ~ 2 + 64 y ~ 2 = 576 , ( 6 x ~ ) 2 2 4 2 + ( 8 y ~ ) 2 2 4 2 = 1 , x ~ 2 4 2 + y ~ 2 3 2 = 1. 36\tilde{x}^2+64\tilde{y}^2=576, \;\; \dfrac{(6\tilde{x})^2}{24^2} + \dfrac{(8\tilde{y})^2}{24^2} = 1, \;\; \dfrac{\tilde{x}^2}{4^2} + \dfrac{\tilde{y}^2}{3^2} = 1. 36 x ~ 2 + 64 y ~ 2 = 576 , 2 4 2 ( 6 x ~ ) 2 + 2 4 2 ( 8 y ~ ) 2 = 1 , 4 2 x ~ 2 + 3 2 y ~ 2 = 1. Another version of equation is
x ~ 2 3 2 + y ~ 2 4 2 = 1. \dfrac{\tilde{x}^2}{3^2} + \dfrac{\tilde{y}^2}{4^2} = 1. 3 2 x ~ 2 + 4 2 y ~ 2 = 1.
It is an ellipse with semiaxes 4 and 3.
The center can be calculated from system
{ A x 0 + B y 0 + D = 0 , B x 0 + C y 0 + E = 0. { 57 x 0 + 7 3 y 0 + 0 = 0 , 7 3 x 0 + 43 y 0 + 0 = 0. x 0 = 0 , y 0 = 0. \begin{cases}
Ax_0+By_0+D=0,\\
Bx_0+Cy_0+E=0.
\end{cases}\;\;\;
\begin{cases}
57x_0+7\sqrt{3}y_0+0=0,\\
7\sqrt{3}x_0+43y_0+0=0.
\end{cases}
\;\;\;x_0 = 0, y_0 = 0. { A x 0 + B y 0 + D = 0 , B x 0 + C y 0 + E = 0. { 57 x 0 + 7 3 y 0 + 0 = 0 , 7 3 x 0 + 43 y 0 + 0 = 0. x 0 = 0 , y 0 = 0.
The angle of shift of the axes is
tan α = A 1 − A B = − 3 , α = − 6 0 ∘ . \tan \alpha = \dfrac{A_1-A}{B} = - \sqrt{3}, \; \alpha = -60^\circ. tan α = B A 1 − A = − 3 , α = − 6 0 ∘ .
Comments