Suppose that x = y = z + 1 = t \
x=y=z+1=t\\ x = y = z + 1 = t
x = t , y = t , z = t − 1 x=t, y=t, z=t−1 x = t , y = t , z = t − 1
Substituting this values in the equation of sphere, we have:
t 2 + t 2 + ( t − 1 ) 2 − t − t + ( t − 1 ) − 1 = 0 t^2+t^2+(t-1)^2-t-t+(t-1)-1=0 t 2 + t 2 + ( t − 1 ) 2 − t − t + ( t − 1 ) − 1 = 0
3 t 2 − 3 t − 1 = 0 3t^2-3t-1=0 3 t 2 − 3 t − 1 = 0
t 1 , 2 = 3 ± 3 2 − 4 × 3 × ( − 1 ) 2 × 3 = 3 ± 21 6 t_{1,2}=\frac{3\pm \sqrt{3^2-4\times 3\times (-1)}}{2\times 3}=\frac{3\pm \sqrt{21} }{6} t 1 , 2 = 2 × 3 3 ± 3 2 − 4 × 3 × ( − 1 ) = 6 3 ± 21
t 1 = 3 + 21 6 , t 2 = 3 − 21 6 t_1=\frac{3+\sqrt{21}}{6}, \ t_2=\frac{3-\sqrt{21}}{6} t 1 = 6 3 + 21 , t 2 = 6 3 − 21
So, we have two points A ( 3 + 21 6 , 3 + 21 6 , − 3 + 21 6 ) , B ( 3 − 21 6 , 3 − 21 6 , − 3 − 21 6 ) A(\frac{3+\sqrt{21}}{6}, \frac{3+\sqrt{21}}{6}, \frac{-3+\sqrt{21}}{6}), \ B(\frac{3-\sqrt{21}}{6}, \frac{3-\sqrt{21}}{6}, \frac{-3-\sqrt{21}}{6}) A ( 6 3 + 21 , 6 3 + 21 , 6 − 3 + 21 ) , B ( 6 3 − 21 , 6 3 − 21 , 6 − 3 − 21 )
The line intersects the sphere at two points A and B. Therefore, this line is a secant line.
Length of the intercept made by the sphere on the line is
= ( x a − x b ) 2 + ( y a − y b ) 2 + ( z a − z b ) 2 = ( 2 21 6 ) 2 + ( 2 21 6 ) 2 + ( 2 21 6 ) 2 =\sqrt {(x_a-x_b)^2+(y_a-y_b)^2+(z_a-z_b)^2}=\sqrt{ (\frac{2\sqrt{21}}{6})^2 + (\frac{2\sqrt{21}}{6})^2+ (\frac{2\sqrt{21}}{6})^2} = ( x a − x b ) 2 + ( y a − y b ) 2 + ( z a − z b ) 2 = ( 6 2 21 ) 2 + ( 6 2 21 ) 2 + ( 6 2 21 ) 2
= 7
=
\sqrt7
= 7
Comments