Question #104582
Does there exist a plane targent to x
2 −2y
2 +2z
2 = 8 and which passes through
2x+3y+2z = 8, x−y+2z = 5? Justify your answer.
1
Expert's answer
2020-03-16T13:53:51-0400

x22y2+2z2=8x^2-2y^2+2z^2=8

The plane which passes through 

2x+3y+2z=8xy+2z=52x+3y+2z=8\\ x-y+2z=5

Point

y=0{2x+2z=8x+2z=5x=3z=1A(3,0,1)y=0\\ \left\{\begin{matrix} 2x+2z=8\\ x+2z=5 \end{matrix}\right.\\ x=3\\ z=1\\ A(3,0,1)

directional vector line

a=n1×n2n1=(2,3,2)n2=(1,1,2)a=(3212;2212;2311)==(8;2;5)\vec{a}=\vec{n_1} \times\vec{n_2}\\ \vec{n_1}=(2,3,2)\\ \vec{n_2}=(1,-1,2)\\ \vec{a}=(\begin{vmatrix} 3 & 2 \\ -1 & 2 \end{vmatrix}; -\begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix};\begin{vmatrix} 2& 3 \\ 1 & -1 \end{vmatrix})=\\ =(8;-2;-5)

Take any point on

x22y2+2z2=8M(x0;y0,z0)x022y02+2z02=8x02=2y022z02+8x^2-2y^2+2z^2=8\\ M(x_0;y_0,z_0)\\ x_0^2-2y_0^2+2z_0^2=8\\ x_0^2=2y_0^2-2z_0^2+8

The equation of the plane passing through the points M,AM, A and the vector a\vec{a}

x3y0z1x03y00z01825=0(x3)y0z0125yx03z0185++(z1)x03y082=0(x3)(5y0+2z02)y(5x08z0+23)++(z1)(2x08y0+6)=0\begin{vmatrix} x-3 & y-0 &z-1\\ x_0-3 & y_0-0&z_0-1\\ 8&-2&-5 \end{vmatrix}=0\\ (x-3)\begin{vmatrix} y_0 & z_0-1\\ -2 & -5 \end{vmatrix}-y\begin{vmatrix} x_0-3 & z_0-1 \\ 8 & -5 \end{vmatrix}+\\+(z-1)\begin{vmatrix} x_0-3 & y_0 \\ 8 & -2 \end{vmatrix}=0\\ (x-3)(-5y_0+2z_0-2)-y(-5x_0-8z_0+23)+\\ +(z-1)(-2x_0-8y_0+6)=0

Answer: there plane a exist and have equation

(x3)(5y0+2z02)y(5x08z0+23)++(z1)(2x08y0+6)=0(x-3)(-5y_0+2z_0-2)-y(-5x_0-8z_0+23)+\\ +(z-1)(-2x_0-8y_0+6)=0

where x02=2y022z02+8x_0^2=2y_0^2-2z_0^2+8



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS