"Given \\ equation\\ is \\ x^2+y^2+2x-y-z+3\\\\\nCompleting \\ the \\ squares \\ we \\ get \\ \nx^2+2x+1+y^2-2(\\frac{1}{2})(y)+\\frac{1}{4}-\\frac{1}{4}-z-\\frac{1}{4}+2=0\\\\\n\\Rightarrow\\ (x+1)^2+(y-\\frac{1}{2})^2+\\frac{7}{4}-z=0\\\\\n\\Rightarrow \\ z=(x+1)^2+(y-\\frac{1}{2})^2+\\frac{7}{4}\\\\\nThe\\ graph\\ of \\ the \\ given\\ equation\\ is\n\u200b\t\n\n \n \n\u200b\t\n\n\u200b"
"ii) \\ 3y^2+3z^2+4x+3y+z=9\\\\\nCompleting\\ the\\ squares \\ we\\ get\\\\\n3(y+\\frac{1}{2})^2+3(z+\\frac{1}{6})^2+4x=(\\sqrt\\frac{59}{6})^2\\\\\nThe\\ graph \\ of \\ the\\ given\\ curve\\ is \\\\"
Comments
These questions are being solved. Please kindly wait.
Can u provide me the answer of 104280,104250
Leave a comment