Question #104280
Reduce the following equations to standard form, and then identify which conicoids they represent. Further, give a rough sketch of each.
i) x^2 +y^2 +2x−y−z+3 = 0
ii) 3y^2 +3z^2 +4x+3y+z = 9
1
Expert's answer
2020-03-13T10:13:39-0400

Given equation is x2+y2+2xyz+3Completing the squares we get x2+2x+1+y22(12)(y)+1414z14+2=0 (x+1)2+(y12)2+74z=0 z=(x+1)2+(y12)2+74The graph of the given equation is​​​Given \ equation\ is \ x^2+y^2+2x-y-z+3\\ Completing \ the \ squares \ we \ get \ x^2+2x+1+y^2-2(\frac{1}{2})(y)+\frac{1}{4}-\frac{1}{4}-z-\frac{1}{4}+2=0\\ \Rightarrow\ (x+1)^2+(y-\frac{1}{2})^2+\frac{7}{4}-z=0\\ \Rightarrow \ z=(x+1)^2+(y-\frac{1}{2})^2+\frac{7}{4}\\ The\ graph\ of \ the \ given\ equation\ is ​ ​ ​



ii) 3y2+3z2+4x+3y+z=9Completing the squares we get3(y+12)2+3(z+16)2+4x=(596)2The graph of the given curve isii) \ 3y^2+3z^2+4x+3y+z=9\\ Completing\ the\ squares \ we\ get\\ 3(y+\frac{1}{2})^2+3(z+\frac{1}{6})^2+4x=(\sqrt\frac{59}{6})^2\\ The\ graph \ of \ the\ given\ curve\ is \\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
09.03.20, 16:25

These questions are being solved. Please kindly wait.

Deepak
09.03.20, 09:32

Can u provide me the answer of 104280,104250

LATEST TUTORIALS
APPROVED BY CLIENTS