Let
x 2 + y 2 + 4 x − 2 y + 3 = 0 x^2+y^2+4x-2y+3=0 x 2 + y 2 + 4 x − 2 y + 3 = 0
i) the origin is shifted at (2,−1)
x = x ′ + a = x ′ + 2 y = y ′ + b = y ′ − 1 x=x'+a=x'+2\\
y=y'+b=y'-1 x = x ′ + a = x ′ + 2 y = y ′ + b = y ′ − 1
substitute into the equation
( x ′ + 2 ) 2 + ( y ′ − 1 ) 2 + 4 ( x ′ + 2 ) − 2 ( y ′ − 1 ) + 3 = 0 x ′ 2 + 4 x ′ + 4 + y ′ 2 − 2 y ′ + 1 + 4 x ′ + 8 − 2 y ′ + 2 + 3 = 0 x ′ 2 + 8 x ′ + y ′ 2 − 4 y ′ + 18 = 0 (x'+2)^2+(y'-1)^2+4(x'+2)-2(y'-1)+3=0\\
x'^2+4x'+4+y'^2-2y'+1+4x'+8-2y'+2+3=0\\
x'^2+8x'+y'^2-4y'+18=0 ( x ′ + 2 ) 2 + ( y ′ − 1 ) 2 + 4 ( x ′ + 2 ) − 2 ( y ′ − 1 ) + 3 = 0 x ′2 + 4 x ′ + 4 + y ′2 − 2 y ′ + 1 + 4 x ′ + 8 − 2 y ′ + 2 + 3 = 0 x ′2 + 8 x ′ + y ′2 − 4 y ′ + 18 = 0
the axes are rotated through 4 5 0 45^0 4 5 0
x ′ = X c o s α − Y s i n α = X c o s 4 5 0 − Y s i n 4 5 0 = = 2 2 X − 2 2 Y = 2 2 ( X − Y ) y ′ = X s i n α + Y c o s α = X s i n 4 5 0 + Y c o s 4 5 0 = = 2 2 X + 2 2 Y = 2 2 ( X + Y ) x'=Xcos\alpha-Ysin\alpha=Xcos45^0-Ysin45^0=\\
=\frac{\sqrt2}{2}X-\frac{\sqrt2}{2}Y=\frac{\sqrt2}{2}(X-Y)\\
y'=Xsin\alpha+Ycos\alpha=Xsin45^0+Ycos45^0=\\
=\frac{\sqrt2}{2}X+\frac{\sqrt2}{2}Y=\frac{\sqrt2}{2}(X+Y)\\ x ′ = X cos α − Y s in α = X cos 4 5 0 − Y s in 4 5 0 = = 2 2 X − 2 2 Y = 2 2 ( X − Y ) y ′ = X s in α + Y cos α = X s in 4 5 0 + Y cos 4 5 0 = = 2 2 X + 2 2 Y = 2 2 ( X + Y )
substitute into the equation
2 4 ( X − Y ) 2 + 8 ⋅ 2 2 ( X − Y ) + + 2 4 ( X + Y ) 2 − 4 ⋅ 2 2 ( X + Y ) + 18 = 0 1 2 ( X 2 − 2 X Y + Y 2 ) + 4 2 ( X − Y ) + + 1 2 ( X 2 + 2 X Y + Y 2 ) − 2 2 ( X + Y ) + 18 = 0 X 2 + Y 2 + 2 2 X − 6 2 Y + 18 = 0 \frac{2}{4}(X-Y)^2+8\cdot\frac{\sqrt2}{2}(X-Y)+\\
+\frac{2}{4}(X+Y)^2-4\cdot\frac{\sqrt2}{2}(X+Y)+18=0\\
\frac{1}{2}(X^2-2XY+Y^2)+4\sqrt2(X-Y)+\\
+\frac{1}{2}(X^2+2XY+Y^2)-2\sqrt2(X+Y)+18=0\\
X^2+Y^2+2\sqrt2X-6\sqrt2Y+18=0 4 2 ( X − Y ) 2 + 8 ⋅ 2 2 ( X − Y ) + + 4 2 ( X + Y ) 2 − 4 ⋅ 2 2 ( X + Y ) + 18 = 0 2 1 ( X 2 − 2 X Y + Y 2 ) + 4 2 ( X − Y ) + + 2 1 ( X 2 + 2 X Y + Y 2 ) − 2 2 ( X + Y ) + 18 = 0 X 2 + Y 2 + 2 2 X − 6 2 Y + 18 = 0
ii) the axes are rotated through 4 5 0 45^0 4 5 0
x = x ′ c o s α − y ′ s i n α = x ′ c o s 4 5 0 − y ′ s i n 4 5 0 = 2 2 ( x ′ − y ′ ) y = x ′ s i n α + y ′ c o s α = x ′ s i n 4 5 0 + y ′ c o s 4 5 0 = 2 2 ( x ′ + y ′ ) x=x'cos\alpha-y'sin\alpha=x'cos45^0-y'sin45^0=\frac{\sqrt2}{2}(x'-y')\\
y=x'sin\alpha+y'cos\alpha=x'sin45^0+y'cos45^0=\frac{\sqrt2}{2}(x'+y')\\ x = x ′ cos α − y ′ s in α = x ′ cos 4 5 0 − y ′ s in 4 5 0 = 2 2 ( x ′ − y ′ ) y = x ′ s in α + y ′ cos α = x ′ s in 4 5 0 + y ′ cos 4 5 0 = 2 2 ( x ′ + y ′ )
substitute into the equation
1 2 ( x ′ − y ′ ) 2 + 1 2 ( x ′ + y ′ ) 2 + + 4 ⋅ 2 2 ( x ′ − y ) − 2 ⋅ 2 2 ( x ′ + y ′ ) + 3 = 0 1 2 ( x ′ 2 − 2 x ′ y ′ + y ′ 2 ) + 1 2 ( x ′ 2 + 2 x ′ y ′ + y ′ 2 ) + + 2 2 ( x ′ − y ′ ) − 2 ( x ′ + y ′ ) + 3 = 0 x ′ 2 + y ′ 2 + 2 x ′ − 3 2 y ′ + 3 = 0 \frac{1}{2}(x'-y')^2+\frac{1}{2}(x'+y')^2+\\
+4\cdot\frac{\sqrt2}{2}(x'-y)-2\cdot\frac{\sqrt2}{2}(x'+y')+3=0\\
\frac{1}{2}(x'^2-2x'y'+y'^2)+\frac{1}{2}(x'^2+2x'y'+y'^2)+\\
+2\sqrt2(x'-y')-\sqrt2(x'+y')+3=0\\
x'^2+y'^2+\sqrt2x'-3\sqrt2y'+3=0 2 1 ( x ′ − y ′ ) 2 + 2 1 ( x ′ + y ′ ) 2 + + 4 ⋅ 2 2 ( x ′ − y ) − 2 ⋅ 2 2 ( x ′ + y ′ ) + 3 = 0 2 1 ( x ′2 − 2 x ′ y ′ + y ′2 ) + 2 1 ( x ′2 + 2 x ′ y ′ + y ′2 ) + + 2 2 ( x ′ − y ′ ) − 2 ( x ′ + y ′ ) + 3 = 0 x ′2 + y ′2 + 2 x ′ − 3 2 y ′ + 3 = 0
the origin is shifted at (2,−1)
x ′ = X + a = X + 2 y ′ = Y + b = Y − 1 x'=X+a=X+2\\
y'=Y+b=Y-1 x ′ = X + a = X + 2 y ′ = Y + b = Y − 1
substitute into the equation
( X + 2 ) 2 + ( Y − 1 ) 2 + 2 ( X + 2 ) − 3 2 ( Y − 1 ) + 3 = 0 X 2 + 4 X + 4 + Y 2 − 2 Y + 1 + 2 X + + 2 2 − 3 2 Y + 3 2 + 3 = 0 X 2 + Y 2 + X ( 4 + 2 ) − Y ( 2 + 3 2 ) + 8 + 5 2 = 0 (X+2)^2+(Y-1)^2+\sqrt2(X+2)-3\sqrt2(Y-1)+3=0\\
X^2+4X+4+Y^2-2Y+1+\sqrt2X+\\
+2\sqrt2-3\sqrt2Y+3\sqrt2+3=0\\
X^2+Y^2+X(4+\sqrt2)-Y(2+3\sqrt2)+8+5\sqrt2=0 ( X + 2 ) 2 + ( Y − 1 ) 2 + 2 ( X + 2 ) − 3 2 ( Y − 1 ) + 3 = 0 X 2 + 4 X + 4 + Y 2 − 2 Y + 1 + 2 X + + 2 2 − 3 2 Y + 3 2 + 3 = 0 X 2 + Y 2 + X ( 4 + 2 ) − Y ( 2 + 3 2 ) + 8 + 5 2 = 0
the equations i) and ii) are different
Comments