Let
"x^2+y^2+4x-2y+3=0"
i) the origin is shifted at (2,−1)
"x=x'+a=x'+2\\\\\ny=y'+b=y'-1"
substitute into the equation
"(x'+2)^2+(y'-1)^2+4(x'+2)-2(y'-1)+3=0\\\\\nx'^2+4x'+4+y'^2-2y'+1+4x'+8-2y'+2+3=0\\\\\nx'^2+8x'+y'^2-4y'+18=0"
 the axes are rotated through "45^0"
"x'=Xcos\\alpha-Ysin\\alpha=Xcos45^0-Ysin45^0=\\\\\n=\\frac{\\sqrt2}{2}X-\\frac{\\sqrt2}{2}Y=\\frac{\\sqrt2}{2}(X-Y)\\\\\ny'=Xsin\\alpha+Ycos\\alpha=Xsin45^0+Ycos45^0=\\\\\n=\\frac{\\sqrt2}{2}X+\\frac{\\sqrt2}{2}Y=\\frac{\\sqrt2}{2}(X+Y)\\\\"
substitute into the equation
"\\frac{2}{4}(X-Y)^2+8\\cdot\\frac{\\sqrt2}{2}(X-Y)+\\\\\n+\\frac{2}{4}(X+Y)^2-4\\cdot\\frac{\\sqrt2}{2}(X+Y)+18=0\\\\\n\\frac{1}{2}(X^2-2XY+Y^2)+4\\sqrt2(X-Y)+\\\\\n+\\frac{1}{2}(X^2+2XY+Y^2)-2\\sqrt2(X+Y)+18=0\\\\\nX^2+Y^2+2\\sqrt2X-6\\sqrt2Y+18=0"
ii) Â the axes are rotated through "45^0"
"x=x'cos\\alpha-y'sin\\alpha=x'cos45^0-y'sin45^0=\\frac{\\sqrt2}{2}(x'-y')\\\\\ny=x'sin\\alpha+y'cos\\alpha=x'sin45^0+y'cos45^0=\\frac{\\sqrt2}{2}(x'+y')\\\\"
substitute into the equation
"\\frac{1}{2}(x'-y')^2+\\frac{1}{2}(x'+y')^2+\\\\\n+4\\cdot\\frac{\\sqrt2}{2}(x'-y)-2\\cdot\\frac{\\sqrt2}{2}(x'+y')+3=0\\\\\n\\frac{1}{2}(x'^2-2x'y'+y'^2)+\\frac{1}{2}(x'^2+2x'y'+y'^2)+\\\\\n+2\\sqrt2(x'-y')-\\sqrt2(x'+y')+3=0\\\\\nx'^2+y'^2+\\sqrt2x'-3\\sqrt2y'+3=0"
the origin is shifted at (2,−1)
"x'=X+a=X+2\\\\\ny'=Y+b=Y-1"
substitute into the equation
"(X+2)^2+(Y-1)^2+\\sqrt2(X+2)-3\\sqrt2(Y-1)+3=0\\\\\nX^2+4X+4+Y^2-2Y+1+\\sqrt2X+\\\\\n+2\\sqrt2-3\\sqrt2Y+3\\sqrt2+3=0\\\\\nX^2+Y^2+X(4+\\sqrt2)-Y(2+3\\sqrt2)+8+5\\sqrt2=0"
the equations  i) and ii) are different
Comments
Leave a comment