Let "P(x_1, y_1, z_1)" be any point on the cylinder. Draw PM perpendicular to the axis of the cylinder. Then "PM=r."
Let "A(a, b, c)" be the point which lies on the axis
"{x-a \\over l}={y-b \\over m}={z-c \\over n}"Now
"AP^2=(x_1-a)^2+(y_1-b)^2+(z_1-c)^2"
"MA = projection\\ of\\ AP\\ on\\ the\\ axis""MA={l(x-a)+m(y-b)+n(z-c) \\over \\sqrt{l^2+m^2+n^2}}" Now, from the right angled â–³"AMP" , we get
"AP^2-MA^2=MP^2""(x_1-a)^2+(y_1-b)^2+(z_1-c)^2 -""-\\big({l(x_1-a)+m(y_1-b)+n(z_1-c) \\over \\sqrt{l^2+m^2+n^2}}\\big)^2=r^2" Then the required equation of the cylinder is
"(x-a)^2+(y-b)^2+(z-c)^2 -""-\\big({l(x-a)+m(y-b)+n(z-c) \\over \\sqrt{l^2+m^2+n^2}}\\big)^2=r^2" Given "P(1, -1, 4)," the line
"{x-1 \\over 2}={y-3 \\over 5}={z+1 \\over 3}" "x_1=1, y_1=-1, z_1=4,"
"a=1,b=3,c=-1,"
"l=2,m=5,n=3"
"r^2=(1-1)^2+(-1-3)^2+(4-(-1))^2 -""-\\big({2(1-1)+5(-1-3)+3(4-(-1)) \\over \\sqrt{2^2+5^2+3^2}}\\big)^2"
"r^2={1533\\over 38}" The equation of the right circular cylinder
"(x-1)^2+(y-3)^2+(z+1)^2 -""-{(2(x-1)+5(y-3)+3(z+1))^2 \\over 38}={1533\\over 38}"
Comments
Leave a comment