Question #104265
Show that x = y = z+1 is a secant line of the sphere x² +y² +z²−x−y+z−1 = 0. Also find the intercept made by the sphere on the line.
1
Expert's answer
2020-03-02T17:00:23-0500

The equation of the sphere

x2+y2+z2xy+z1=0(x12)2+(y12)2+(z+12)2=1+14+14+14(x12)2+(y12)2+(z+12)2=74x^2+y^2+z^2-x-y+z-1=0\\ (x-\frac{1}{2})^2+(y-\frac{1}{2})^2+(z+\frac{1}{2})^2=1+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\\ (x-\frac{1}{2})^2+(y-\frac{1}{2})^2+(z+\frac{1}{2})^2=\frac{7}{4}

center O(12,12,12)O(\frac{1}{2},\frac{1}{2},-\frac{1}{2}) , R=74=72R=\sqrt\frac{7}{4}=\frac{\sqrt7}{2}

Let

x=y=z+1=tx=y=z+1=t

now putting the value of x,yx,y and zz in the above equation of the sphere we get

(t12)2+(t12)2+(t1+12)2=743(t12)2=74(t12)2=712t12=712andt12=712t=12+712andt=12712(t-\frac{1}{2})^2+(t-\frac{1}{2})^2+(t-1+\frac{1}{2})^2=\frac{7}{4}\\ 3(t-\frac{1}{2})^2=\frac{7}{4}\\ (t-\frac{1}{2})^2=\frac{7}{12}\\ t-\frac{1}{2}=\sqrt\frac{7}{12} \\and \\t-\frac{1}{2}=-\sqrt\frac{7}{12}\\ t=\frac{1}{2}+\sqrt\frac{7}{12}\\ and\\ t=\frac{1}{2}-\sqrt\frac{7}{12}

so we get two points where the line cuts the sphere :

A(12+712,12+712,12+712)andB(12712,12712,12712)A(\frac{1}{2}+\sqrt\frac{7}{12},\frac{1}{2}+\sqrt\frac{7}{12},-\frac{1}{2}+\sqrt\frac{7}{12})\\ and\\ B(\frac{1}{2}-\sqrt\frac{7}{12},\frac{1}{2}-\sqrt\frac{7}{12},-\frac{1}{2}-\sqrt\frac{7}{12})

distance between these points is

AB=(xBxA)2+(yByA)2+(zBzA)2AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2}

computable

(xBxA)2=(1271212712)2==(2712)2=73(yByA)2=(1271212712)2=73(zBzA)2=(12712+12712)2=73(x_B-x_A)^2=(\frac{1}{2}-\sqrt\frac{7}{12}-\frac{1}{2}-\sqrt\frac{7}{12})^2=\\ =(2\sqrt\frac{7}{12})^2=\frac{7}{3}\\ (y_B-y_A)^2=(\frac{1}{2}-\sqrt\frac{7}{12}-\frac{1}{2}-\sqrt\frac{7}{12})^2=\frac{7}{3}\\ (z_B-z_A)^2=(-\frac{1}{2}-\sqrt\frac{7}{12}+\frac{1}{2}-\sqrt\frac{7}{12})^2=\frac{7}{3}

AB=73+73+73=7=2RAB=\sqrt{\frac{7}{3}+\frac{7}{3}+\frac{7}{3}}=\sqrt{7}=2R

distance between the two points is equal the diameter of the sphere

hence the given line is a secant the sphere and the intercept made by the line to the sphere is7\sqrt{7}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS