The equation of the sphere
x 2 + y 2 + z 2 − x − y + z − 1 = 0 ( x − 1 2 ) 2 + ( y − 1 2 ) 2 + ( z + 1 2 ) 2 = 1 + 1 4 + 1 4 + 1 4 ( x − 1 2 ) 2 + ( y − 1 2 ) 2 + ( z + 1 2 ) 2 = 7 4 x^2+y^2+z^2-x-y+z-1=0\\
(x-\frac{1}{2})^2+(y-\frac{1}{2})^2+(z+\frac{1}{2})^2=1+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\\
(x-\frac{1}{2})^2+(y-\frac{1}{2})^2+(z+\frac{1}{2})^2=\frac{7}{4} x 2 + y 2 + z 2 − x − y + z − 1 = 0 ( x − 2 1 ) 2 + ( y − 2 1 ) 2 + ( z + 2 1 ) 2 = 1 + 4 1 + 4 1 + 4 1 ( x − 2 1 ) 2 + ( y − 2 1 ) 2 + ( z + 2 1 ) 2 = 4 7
center O ( 1 2 , 1 2 , − 1 2 ) O(\frac{1}{2},\frac{1}{2},-\frac{1}{2}) O ( 2 1 , 2 1 , − 2 1 ) , R = 7 4 = 7 2 R=\sqrt\frac{7}{4}=\frac{\sqrt7}{2} R = 4 7 = 2 7
Let
x = y = z + 1 = t x=y=z+1=t x = y = z + 1 = t
now putting the value of x , y x,y x , y and z z z in the above equation of the sphere we get
( t − 1 2 ) 2 + ( t − 1 2 ) 2 + ( t − 1 + 1 2 ) 2 = 7 4 3 ( t − 1 2 ) 2 = 7 4 ( t − 1 2 ) 2 = 7 12 t − 1 2 = 7 12 a n d t − 1 2 = − 7 12 t = 1 2 + 7 12 a n d t = 1 2 − 7 12 (t-\frac{1}{2})^2+(t-\frac{1}{2})^2+(t-1+\frac{1}{2})^2=\frac{7}{4}\\
3(t-\frac{1}{2})^2=\frac{7}{4}\\
(t-\frac{1}{2})^2=\frac{7}{12}\\
t-\frac{1}{2}=\sqrt\frac{7}{12} \\and \\t-\frac{1}{2}=-\sqrt\frac{7}{12}\\
t=\frac{1}{2}+\sqrt\frac{7}{12}\\
and\\
t=\frac{1}{2}-\sqrt\frac{7}{12} ( t − 2 1 ) 2 + ( t − 2 1 ) 2 + ( t − 1 + 2 1 ) 2 = 4 7 3 ( t − 2 1 ) 2 = 4 7 ( t − 2 1 ) 2 = 12 7 t − 2 1 = 12 7 an d t − 2 1 = − 12 7 t = 2 1 + 12 7 an d t = 2 1 − 12 7
so we get two points where the line cuts the sphere :
A ( 1 2 + 7 12 , 1 2 + 7 12 , − 1 2 + 7 12 ) a n d B ( 1 2 − 7 12 , 1 2 − 7 12 , − 1 2 − 7 12 ) A(\frac{1}{2}+\sqrt\frac{7}{12},\frac{1}{2}+\sqrt\frac{7}{12},-\frac{1}{2}+\sqrt\frac{7}{12})\\
and\\
B(\frac{1}{2}-\sqrt\frac{7}{12},\frac{1}{2}-\sqrt\frac{7}{12},-\frac{1}{2}-\sqrt\frac{7}{12}) A ( 2 1 + 12 7 , 2 1 + 12 7 , − 2 1 + 12 7 ) an d B ( 2 1 − 12 7 , 2 1 − 12 7 , − 2 1 − 12 7 )
distance between these points is
A B = ( x B − x A ) 2 + ( y B − y A ) 2 + ( z B − z A ) 2 AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2} A B = ( x B − x A ) 2 + ( y B − y A ) 2 + ( z B − z A ) 2
computable
( x B − x A ) 2 = ( 1 2 − 7 12 − 1 2 − 7 12 ) 2 = = ( 2 7 12 ) 2 = 7 3 ( y B − y A ) 2 = ( 1 2 − 7 12 − 1 2 − 7 12 ) 2 = 7 3 ( z B − z A ) 2 = ( − 1 2 − 7 12 + 1 2 − 7 12 ) 2 = 7 3 (x_B-x_A)^2=(\frac{1}{2}-\sqrt\frac{7}{12}-\frac{1}{2}-\sqrt\frac{7}{12})^2=\\
=(2\sqrt\frac{7}{12})^2=\frac{7}{3}\\
(y_B-y_A)^2=(\frac{1}{2}-\sqrt\frac{7}{12}-\frac{1}{2}-\sqrt\frac{7}{12})^2=\frac{7}{3}\\
(z_B-z_A)^2=(-\frac{1}{2}-\sqrt\frac{7}{12}+\frac{1}{2}-\sqrt\frac{7}{12})^2=\frac{7}{3} ( x B − x A ) 2 = ( 2 1 − 12 7 − 2 1 − 12 7 ) 2 = = ( 2 12 7 ) 2 = 3 7 ( y B − y A ) 2 = ( 2 1 − 12 7 − 2 1 − 12 7 ) 2 = 3 7 ( z B − z A ) 2 = ( − 2 1 − 12 7 + 2 1 − 12 7 ) 2 = 3 7
A B = 7 3 + 7 3 + 7 3 = 7 = 2 R AB=\sqrt{\frac{7}{3}+\frac{7}{3}+\frac{7}{3}}=\sqrt{7}=2R A B = 3 7 + 3 7 + 3 7 = 7 = 2 R
distance between the two points is equal the diameter of the sphere
hence the given line is a secant the sphere and the intercept made by the line to the sphere is7 \sqrt{7} 7
Comments