The equation of the sphere
x2+y2+z2−x−y+z−1=0(x−21)2+(y−21)2+(z+21)2=1+41+41+41(x−21)2+(y−21)2+(z+21)2=47
center O(21,21,−21) , R=47=27
Let
x=y=z+1=t
now putting the value of x,y and z in the above equation of the sphere we get
(t−21)2+(t−21)2+(t−1+21)2=473(t−21)2=47(t−21)2=127t−21=127andt−21=−127t=21+127andt=21−127
so we get two points where the line cuts the sphere :
A(21+127,21+127,−21+127)andB(21−127,21−127,−21−127)
distance between these points is
AB=(xB−xA)2+(yB−yA)2+(zB−zA)2
computable
(xB−xA)2=(21−127−21−127)2==(2127)2=37(yB−yA)2=(21−127−21−127)2=37(zB−zA)2=(−21−127+21−127)2=37
AB=37+37+37=7=2R
distance between the two points is equal the diameter of the sphere
hence the given line is a secant the sphere and the intercept made by the line to the sphere is7
Comments