Let "\\alpha" be the plane containing points A, B, and C. The vector "\\vec{n}" is a unit vector perpendicular to the plane. "\\overrightarrow{AB} = (2,-2,-1), \\overrightarrow{AC} = (0,1,1), \\overrightarrow{AD} = (1,-8,9).\\\\"
a) The unit vector "\\vec{n}" can be found as a cross-product of vectors "\\overrightarrow{AC}" and "\\overrightarrow{AB}" normalized by its length.
"\\vec{n} =\\dfrac{\\overrightarrow{AB} \\times \\overrightarrow{AC} }{|\\overrightarrow{AB} \\times \\overrightarrow{AC}|}\\\\" .
"\\overrightarrow{AB} \\times \\overrightarrow{AC} = \\begin{vmatrix} \\mathbf i & \\mathbf j & \\mathbf k \\\\ 2 & -2 & -1 \\\\ 0 & 1 & 1 \\end{vmatrix} = (-1, 2, 2).\\\\"
"|\\overrightarrow{AC} \\times \\overrightarrow{AB}| = \\sqrt{(-1)^2 + (2)^2 + (2)^2} = 3.\\\\"
Thus, "\\vec{n} = \\dfrac{1}{3}(-1, 2, 2).\\\\"
b) The shortest distance "DD'" between D and the plane can be found as a projection of vector "\\overrightarrow{AD}" onto the "\\vec{n}" direction. Namely,
"DD'=\\overrightarrow{AD} \\cdot \\vec{n}.\\\\"
"DD' = \\dfrac{1}{3}( 1\\cdot(-1) + (-8)\\cdot2 + 9\\cdot 2) = \\dfrac{1}{3}"
Answer. a) "\\vec{n} = \\dfrac{1}{3}(-1, 2, 2)" , b) "DD'= \\dfrac{1}{3}" .
Comments
Leave a comment