Solution:
The vertex "V(1,-1,2)". Let a, b, c be the direction ratios of generator of the cone.
Then the equations of generator are
"\\frac{x-1}{a}=\\frac{y+1}{b}=\\frac{z-2}{c}=t" (say) (I)
The coordinates of any points on the generator are "(1+at, -1+bt, 2+ct)".
For some "t \\in \\Reals, (1+at, -1+bt, 2+ct)" lies on the guiding curve.
Therefore "((2+ct)+1)^2=(1+at)+2" and "-1+bt=3". Thus, "t=\\frac{4}{b}".
From this we get
"((2+c\\cdot\\frac{4}{b})+1)^2=(1+a\\cdot\\frac{4}{b})+2"
From (I) we obtain:
"(3+4\\cdot\\frac{z-2}{y+1})^2=3+4\\cdot\\frac{x-1}{y+1}" .
After simplification, the required equation of the cone is
"6y^2+24yz-4xy-32y+16z^2+26-40z-4x=0".
Answer:
"6y^2+24yz-4xy-32y+16z^2+26-40z-4x=0".
Comments
Leave a comment