x23−y24=z\dfrac{x^2}{3}-\dfrac{y^2}{4}=z3x2−4y2=z
x+2y−z=6x+2y−z=6x+2y−z=6
We will find z
z=x+2y−6z=x+2y−6z=x+2y−6
x23−y24=x+2y−6\dfrac{x^2}{3}-\dfrac{y^2}{4}=x+2y−63x2−4y2=x+2y−6
4x2−3y2−12x−24y=−724(x2−3x)−3(y2+8y)=−724x^2-3y^2-12x-24y=-72\\ 4(x^2-3x)-3(y^2+8y)=-72\\4x2−3y2−12x−24y=−724(x2−3x)−3(y2+8y)=−72
4(x−3)2−3(y+2)2=−72+9−48=−1114(x-3)^2-3(y+2)^2=-72+9-48=-111\\4(x−3)2−3(y+2)2=−72+9−48=−111
4(x−32)111−3(y+4)2111=−1(x−32)1114−(y+4)21113=−1\dfrac{4(x-\dfrac{3}{2})}{111}-\dfrac{3(y+4)^2}{111}=-1\\ \dfrac{(x-\dfrac{3}{2})}{\dfrac{111}{4}}-\dfrac{(y+4)^2}{{\dfrac{111}{3}}}=-1\\1114(x−23)−1113(y+4)2=−14111(x−23)−3111(y+4)2=−1
This is a equation of conjugated hyperbola
center(32;−4)center (\frac{3}{2};-4)center(23;−4)
semi−axes:a=1114,b=1113semi-axes : \\a=\sqrt{\frac{111}{4}}, b=\sqrt{\frac{111}{3}}semi−axes:a=4111,b=3111
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments