"\\dfrac{x^2}{3}-\\dfrac{y^2}{4}=z"
"x+2y\u2212z=6"
We will find z
"z=x+2y\u22126"
"\\dfrac{x^2}{3}-\\dfrac{y^2}{4}=x+2y\u22126"
"4x^2-3y^2-12x-24y=-72\\\\ 4(x^2-3x)-3(y^2+8y)=-72\\\\"
"4(x-3)^2-3(y+2)^2=-72+9-48=-111\\\\"
"\\dfrac{4(x-\\dfrac{3}{2})}{111}-\\dfrac{3(y+4)^2}{111}=-1\\\\ \\dfrac{(x-\\dfrac{3}{2})}{\\dfrac{111}{4}}-\\dfrac{(y+4)^2}{{\\dfrac{111}{3}}}=-1\\\\"
This is a equation of conjugated hyperbola
"center \n(\\frac{3}{2};-4)"
"semi-axes :\n\\\\a=\\sqrt{\\frac{111}{4}}, b=\\sqrt{\\frac{111}{3}}"
Comments
Leave a comment