Question #86901
Apply Cramer’s rule to solve the following system of equations:

2x x x 4 1 + 2 + 3 =
x x 2x 2 1 − 2 + 3 =
3x 2x x 0 1 − 2 − 3 =
1
Expert's answer
2019-03-25T14:53:51-0400



Initial system is : 2x + y + z = 4

                             x - y + 2z = 2

                             3x - 2y - z = 0




x=detxdety=detydetz=detzdetx = \frac{det_x}{det} \quad y = \frac{det_y}{det} \quad z = \frac{det_z}{det}





det(211112321)=2122111231+11132det \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 2 \\ 3 & -2 & -1 \end{pmatrix} = 2 \begin{vmatrix} -1 & 2 \\ -2 & -1 \end{vmatrix} - 1\begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1\begin{vmatrix} 1 & -1 \\ 3 & -2 \end{vmatrix}



2(1122)1(1123)+1(12(1)3)=10+7+1=182( -1*-1 - 2 * -2) - 1(1*-1 - 2*3) + 1(1*-2 - (-1)*3) = 10 + 7 + 1 = 18



detx=det(411212021)=4122112201+12102det_x = det \begin{pmatrix} 4 & 1 & 1 \\ 2 & -1 & 2 \\ 0 & -2 & -1 \end{pmatrix} = 4 \begin{vmatrix} -1 & 2 \\ -2 & -1 \end{vmatrix} - 1\begin{vmatrix} 2 & 2 \\ 0 & -1 \end{vmatrix} + 1\begin{vmatrix} 2 & -1 \\ 0 & -2 \end{vmatrix}



4(1122)1(2120)+1(22(1)0)=20+24=184(-1 *-1 - 2*-2) - 1(2*-1 - 2*0) + 1(2*-2 - (-1)*0) = 20 + 2 - 4 = 18





dety=det(241122301)=2220141231+11230det_y = det \begin{pmatrix} 2 & 4 & 1 \\ 1 & 2 & 2 \\ 3 & 0 & -1 \end{pmatrix} = 2 \begin{vmatrix} 2 & 2 \\ 0 & -1 \end{vmatrix} - 4\begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1\begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix}




2(2120)4(1123)+1(1023)=4+286=182(2*-1 - 2*0) - 4(1*-1 - 2*3) + 1(1*0 - 2*3) = -4 + 28 - 6 = 18



detz=det(214112320)=2122011230+41132det_z = det \begin{pmatrix} 2 & 1 & 4 \\ 1 & -1 & 2 \\ 3 & -2 & 0 \end{pmatrix} = 2 \begin{vmatrix} -1 & 2 \\ -2 & 0 \end{vmatrix} - 1\begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} + 4\begin{vmatrix} 1 & -1 \\ 3 & -2 \end{vmatrix}



2(1022)1(1023)+4(12(1)3)=8+6+4=182(-1*0 - 2*-2) - 1(1*0 - 2*3) + 4(1*-2 - (-1)*3) = 8 + 6 + 4 = 18



x=detxdety=detydetz=detzdetx = \frac{det_x}{det} \quad y = \frac{det_y}{det} \quad z = \frac{det_z}{det}





x=1818y=1818=1z=1818=1x = \frac{18}{18} \quad y = \frac{18}{18} = 1 \quad z= \frac{18}{18} = 1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS