Answer to Question #86901 in Algebra for sonali mansingh

Question #86901
Apply Cramer’s rule to solve the following system of equations:

2x x x 4 1 + 2 + 3 =
x x 2x 2 1 − 2 + 3 =
3x 2x x 0 1 − 2 − 3 =
1
Expert's answer
2019-03-25T14:53:51-0400



Initial system is : 2x + y + z = 4

                             x - y + 2z = 2

                             3x - 2y - z = 0




"x = \\frac{det_x}{det} \\quad y = \\frac{det_y}{det} \\quad z = \\frac{det_z}{det}"





"det \\begin{pmatrix}\n 2 & 1 & 1 \\\\\n 1 & -1 & 2 \\\\\n 3 & -2 & -1\n\\end{pmatrix} = 2 \\begin{vmatrix}\n -1 & 2 \\\\\n -2 & -1\n\\end{vmatrix} - 1\\begin{vmatrix}\n 1 & 2 \\\\\n 3 & -1\n\\end{vmatrix} + 1\\begin{vmatrix}\n 1 & -1 \\\\\n 3 & -2\n\\end{vmatrix}"



"2( -1*-1 - 2 * -2) - 1(1*-1 - 2*3) + 1(1*-2 - (-1)*3) = 10 + 7 + 1 = 18"



"det_x = det \\begin{pmatrix}\n 4 & 1 & 1 \\\\\n 2 & -1 & 2 \\\\\n 0 & -2 & -1\n\\end{pmatrix} = 4 \\begin{vmatrix}\n -1 & 2 \\\\\n -2 & -1\n\\end{vmatrix} - 1\\begin{vmatrix}\n 2 & 2 \\\\\n 0 & -1\n\\end{vmatrix} + 1\\begin{vmatrix}\n 2 & -1 \\\\\n 0 & -2\n\\end{vmatrix}"



"4(-1 *-1 - 2*-2) - 1(2*-1 - 2*0) + 1(2*-2 - (-1)*0) = 20 + 2 - 4 = 18"





"det_y = det \\begin{pmatrix}\n 2 & 4 & 1 \\\\\n 1 & 2 & 2 \\\\\n 3 & 0 & -1\n\\end{pmatrix} = 2 \\begin{vmatrix}\n 2 & 2 \\\\\n 0 & -1\n\\end{vmatrix} - 4\\begin{vmatrix}\n 1 & 2 \\\\\n 3 & -1\n\\end{vmatrix} + 1\\begin{vmatrix}\n 1 & 2 \\\\\n 3 & 0\n\\end{vmatrix}"




"2(2*-1 - 2*0) - 4(1*-1 - 2*3) + 1(1*0 - 2*3) = -4 + 28 - 6 = 18"



"det_z = det \\begin{pmatrix}\n 2 & 1 & 4 \\\\\n 1 & -1 & 2 \\\\\n 3 & -2 & 0\n\\end{pmatrix} = 2 \\begin{vmatrix}\n -1 & 2 \\\\\n -2 & 0\n\\end{vmatrix} - 1\\begin{vmatrix}\n 1 & 2 \\\\\n 3 & 0\n\\end{vmatrix} + 4\\begin{vmatrix}\n 1 & -1 \\\\\n 3 & -2\n\\end{vmatrix}"



"2(-1*0 - 2*-2) - 1(1*0 - 2*3) + 4(1*-2 - (-1)*3) = 8 + 6 + 4 = 18"



"x = \\frac{det_x}{det} \\quad y = \\frac{det_y}{det} \\quad z = \\frac{det_z}{det}"





"x = \\frac{18}{18} \\quad y = \\frac{18}{18} = 1 \\quad z= \\frac{18}{18} = 1"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS