Consider a function and find its derivative:
f ′ ( n ) = ( 2 n − 1 − n ∗ 2 n − 1 ) f'(n)=(2^{n}-1-n*\sqrt{2^{n-1}}) f ′ ( n ) = ( 2 n − 1 − n ∗ 2 n − 1 ) Differentiate the sum term by term and factor out constants:
d ( − 1 ) / d n + d ( 2 n ) / d n − d ( 2 n − 1 ∗ n ) / d n d(-1)/dn+d(2^n)/dn-d(\sqrt{2^{n-1}}*n)/dn d ( − 1 ) / d n + d ( 2 n ) / d n − d ( 2 n − 1 ∗ n ) / d n The derivative of -1 is zero:
d ( 2 n ) / d n − d ( 2 n − 1 ∗ n ) / d n + 0 d(2^n)/dn-d(\sqrt{2^{n-1}}*n)/dn+0 d ( 2 n ) / d n − d ( 2 n − 1 ∗ n ) / d n + 0 The derivative of 2^n is 2^nlog(2):
− ( d ( 2 n − 1 ∗ n ) / d n ) + 2 n l o g ( 2 ) -(d(\sqrt{2^{n-1}}*n)/dn)+2^nlog(2) − ( d ( 2 n − 1 ∗ n ) / d n ) + 2 n l o g ( 2 ) Use the product rule, d ( u v ) / d n = ( v ) d u / d n + ( u ) d v / d n d(u v)/dn=(v)du/dn+(u)dv/dn d ( uv ) / d n = ( v ) d u / d n + ( u ) d v / d n where u = 2 n − 1 u=\sqrt{2^{n-1}} u = 2 n − 1 and v = n v=n v = n
Simplify the expression:
2 n l o g ( 2 ) − n ( d ( 2 n − 1 ) / d n ) − 2 n − 1 ∗ ( d ( n ) / d n ) 2^nlog(2)-n(d(\sqrt{2^{n-1}})/dn)-\sqrt{2^{n-1}}*(d(n)/dn) 2 n l o g ( 2 ) − n ( d ( 2 n − 1 ) / d n ) − 2 n − 1 ∗ ( d ( n ) / d n ) Similarly, we repeat the decomposition and as a result we get:
− 2 n − 1 + 2 n ∗ l o g ( 2 ) − ( 2 n − 1 ∗ n ∗ l o g ( 2 ) ) / 2 -\sqrt{2^{n-1}}+2^n*log(2)-(\sqrt{2^{n-1}}*n*log(2))/2 − 2 n − 1 + 2 n ∗ l o g ( 2 ) − ( 2 n − 1 ∗ n ∗ l o g ( 2 )) /2 Simplify the expression:
l o g ( 2 ) ( 2 n − n 2 n − 1 ) − 2 n − 1 log(2)(2^n-n\sqrt{2^{n-1}})-\sqrt{2^{n-1}} l o g ( 2 ) ( 2 n − n 2 n − 1 ) − 2 n − 1 As you can see, the derivative is positive when n>2, therefore, the function is increasing at n>2.
Insofar as f ( 2 ) = l o g ( 2 ) ( 4 − 2 ) − 2 = 0.38 f(2)=log(2)(4-\sqrt{2})-\sqrt{2}=0.38 f ( 2 ) = l o g ( 2 ) ( 4 − 2 ) − 2 = 0.38 that function positive for all n>2
Thus, for n> 2, the following inequality holds:f ( n ) > 0 , ⟹ 2 n − 1 − n 2 n − 1 > 0 , ⟹ f(n)>0, \implies 2^n-1-n\sqrt{2^{n-1}}>0, \implies f ( n ) > 0 , ⟹ 2 n − 1 − n 2 n − 1 > 0 , ⟹ 2 n > 1 + n 2 n − 1 2^n>1+n\sqrt{2^{n-1}} 2 n > 1 + n 2 n − 1
Comments