For a system of linear equations in two variables, exactly one of the following is true.
"\\begin{matrix}\n a_1x+b_1y=c_1 \\\\\n a_2x+b_2y=c_2\n\\end{matrix}" 1. The system has no solution.
"\\begin{vmatrix}\n a_1 & b_1 \\\\\n a_2 & b_2\n\\end{vmatrix}=0\\ but \\ \\begin{vmatrix}\n c_1 & b_1 \\\\\n c_2 & b_2\n\\end{vmatrix}=\\not 0\\ or \\begin{vmatrix}\n a_1 & c_1 \\\\\n a_2 & c_2\n\\end{vmatrix}=\\not0"
"\\begin{matrix}\n E : 5x-2y=3 \\\\\n E1: -10x+4y=5\n\\end{matrix}"
2. The system has exactly one solution.
"\\begin{vmatrix}\n a_1 & b_1 \\\\\n a_2 & b_2\n\\end{vmatrix}=\\not0"
"\\begin{matrix}\n E : 5x-2y=3 \\\\\n E2: x+4y=5\n\\end{matrix}"
3. The system has infinitely many solutions.
"\\begin{vmatrix}\n a_1 & b_1 \\\\\n a_2 & b_2\n\\end{vmatrix}=0 , \\begin{vmatrix}\n c_1 & b_1 \\\\\n c_2 & b_2\n\\end{vmatrix}=0, \\begin{vmatrix}\n a_1 & c_1 \\\\\n a_2 & c_2\n\\end{vmatrix}=0"
"\\begin{matrix}\n E : 5x-2y=3 \\\\\n E3: -15x+6y=-9\n\\end{matrix}"
Comments
Leave a comment