f(x)=2x−3x2+3x+5
a)
denominator of f(x): 2x−3=0 at x=3/2 , so
domain: x∈(−∞,3/2)∪(3/2,∞)
b)
f(x)→−∞ for x→−∞
f(x)→∞ for x→∞
f(x)→−∞ for x→(3/2)−
f(x)→∞ for x→(3/2)+
local maximum: f(−1.93)=−0.43
local minimum: f(4.93)=6.43
so:
range: x∈(−∞,−0.43]∪[6.43,∞)
c)
y-intercept: (0,−5/3)
for x2+3x+5=0 :
discriminant D=9−20=−11<0
so, x2+3x+5>0 and there are no x-intercepts
d)
x→(3/2)−limf(x)=−∞
x→(3/2)+limf(x)=∞
x=3/2 is vertical asymptote
for oblique asymptote:
y=mx+n
m=x→(3/2)limf(x)/x=x→(3/2)limx(2x−3)x2+3x+5=x→(3/2)lim4x−32x+3=2
n=x→(3/2)lim(f(x)−mx)=x→(3/2)lim(2x−3x2+3x+5−2x)=
=x→(3/2)limx−6x+9=0
y=2x is oblique asymptote
e)
f′(x)=(2x−3)2(2x+3)(2x−3)−2(x2+3x+5)=(2x−3)22x2−6x−19=0
2x2−6x−19=0
x=46±36+152
x1=−1.93,x2=4.93
f(−1.93)=−0.43
f(4.93)=6.43
at x1=−1.93 f'(x) changes sign from "+" to "-", so this is local maximum
at x2=4.93 f'(x) changes sign from "-" to "+", so this is local minimum
f)
Comments
Leave a comment