f ( x ) = x 2 + 3 x + 5 2 x − 3 f(x)=\frac{x^2+3x+5}{2x-3} f ( x ) = 2 x − 3 x 2 + 3 x + 5
a)
denominator of f(x): 2 x − 3 = 0 2x-3=0 2 x − 3 = 0 at x = 3 / 2 x=3/2 x = 3/2 , so
domain: x ∈ ( − ∞ , 3 / 2 ) ∪ ( 3 / 2 , ∞ ) x\isin (-\infin,3/2)\cup (3/2,\infin) x ∈ ( − ∞ , 3/2 ) ∪ ( 3/2 , ∞ )
b)
f ( x ) → − ∞ f(x)\to -\infin f ( x ) → − ∞ for x → − ∞ x\to -\infin x → − ∞
f ( x ) → ∞ f(x)\to \infin f ( x ) → ∞ for x → ∞ x\to \infin x → ∞
f ( x ) → − ∞ f(x)\to -\infin f ( x ) → − ∞ for x → ( 3 / 2 ) − x\to (3/2)^- x → ( 3/2 ) −
f ( x ) → ∞ f(x)\to \infin f ( x ) → ∞ for x → ( 3 / 2 ) + x\to (3/2)^+ x → ( 3/2 ) +
local maximum: f ( − 1.93 ) = − 0.43 f(-1.93)=-0.43 f ( − 1.93 ) = − 0.43
local minimum: f ( 4.93 ) = 6.43 f(4.93)=6.43 f ( 4.93 ) = 6.43
so:
range: x ∈ ( − ∞ , − 0.43 ] ∪ [ 6.43 , ∞ ) x\isin (-\infin,-0.43]\cup [6.43,\infin) x ∈ ( − ∞ , − 0.43 ] ∪ [ 6.43 , ∞ )
c)
y-intercept: ( 0 , − 5 / 3 ) (0,-5/3) ( 0 , − 5/3 )
for x 2 + 3 x + 5 = 0 x^2 + 3x + 5=0 x 2 + 3 x + 5 = 0 :
discriminant D = 9 − 20 = − 11 < 0 D=9-20=-11<0 D = 9 − 20 = − 11 < 0
so, x 2 + 3 x + 5 > 0 x^2 + 3x + 5>0 x 2 + 3 x + 5 > 0 and there are no x-intercepts
d)
lim x → ( 3 / 2 ) − f ( x ) = − ∞ \displaystyle\lim_{x\to (3/2)^-}f(x)=-\infin x → ( 3/2 ) − lim f ( x ) = − ∞
lim x → ( 3 / 2 ) + f ( x ) = ∞ \displaystyle\lim_{x\to (3/2)^+}f(x)=\infin x → ( 3/2 ) + lim f ( x ) = ∞
x = 3 / 2 x=3/2 x = 3/2 is vertical asymptote
for oblique asymptote:
y = m x + n y=mx+n y = m x + n
m = lim x → ( 3 / 2 ) f ( x ) / x = lim x → ( 3 / 2 ) x 2 + 3 x + 5 x ( 2 x − 3 ) = lim x → ( 3 / 2 ) 2 x + 3 4 x − 3 = 2 m=\displaystyle\lim_{x\to (3/2)}f(x)/x=\displaystyle\lim_{x\to (3/2)}\frac{x^2+3x+5}{x(2x-3)}=\displaystyle\lim_{x\to (3/2)}\frac{2x+3}{4x-3}=2 m = x → ( 3/2 ) lim f ( x ) / x = x → ( 3/2 ) lim x ( 2 x − 3 ) x 2 + 3 x + 5 = x → ( 3/2 ) lim 4 x − 3 2 x + 3 = 2
n = lim x → ( 3 / 2 ) ( f ( x ) − m x ) = lim x → ( 3 / 2 ) ( x 2 + 3 x + 5 2 x − 3 − 2 x ) = n=\displaystyle\lim_{x\to (3/2)}(f(x)-mx)=\displaystyle\lim_{x\to (3/2)}(\frac{x^2+3x+5}{2x-3}-2x)= n = x → ( 3/2 ) lim ( f ( x ) − m x ) = x → ( 3/2 ) lim ( 2 x − 3 x 2 + 3 x + 5 − 2 x ) =
= lim x → ( 3 / 2 ) − 6 x + 9 x = 0 =\displaystyle\lim_{x\to (3/2)}\frac{-6x+9}{x}=0 = x → ( 3/2 ) lim x − 6 x + 9 = 0
y = 2 x y=2x y = 2 x is oblique asymptote
e)
f ′ ( x ) = ( 2 x + 3 ) ( 2 x − 3 ) − 2 ( x 2 + 3 x + 5 ) ( 2 x − 3 ) 2 = 2 x 2 − 6 x − 19 ( 2 x − 3 ) 2 = 0 f'(x)=\frac{(2x+3)(2x-3)-2(x^2+3x+5)}{(2x-3)^2}=\frac{2x^2-6x-19}{(2x-3)^2}=0 f ′ ( x ) = ( 2 x − 3 ) 2 ( 2 x + 3 ) ( 2 x − 3 ) − 2 ( x 2 + 3 x + 5 ) = ( 2 x − 3 ) 2 2 x 2 − 6 x − 19 = 0
2 x 2 − 6 x − 19 = 0 2x^2-6x-19=0 2 x 2 − 6 x − 19 = 0
x = 6 ± 36 + 152 4 x=\frac{6\pm \sqrt{36+152}}{4} x = 4 6 ± 36 + 152
x 1 = − 1.93 , x 2 = 4.93 x_1=-1.93,x_2=4.93 x 1 = − 1.93 , x 2 = 4.93
f ( − 1.93 ) = − 0.43 f(-1.93)=-0.43 f ( − 1.93 ) = − 0.43
f ( 4.93 ) = 6.43 f(4.93)=6.43 f ( 4.93 ) = 6.43
at x 1 = − 1.93 x_1=-1.93 x 1 = − 1.93 f'(x) changes sign from "+" to "-", so this is local maximum
at x 2 = 4.93 x_2=4.93 x 2 = 4.93 f'(x) changes sign from "-" to "+", so this is local minimum
f)
Comments