8∑(j=1)2^j
Let us find the sum "\\sum\\limits_{j=1}^82^j" using the formula for the sum of geometric progression "S_n=a_1\\frac{q^n-1}{q-1}."
In our case, "a_1=2,\\ q=2,\\ n=8."
It follows that
"\\sum\\limits_{j=1}^82^j=S_8=2\\frac{2^8-1}{2-1}=2\\cdot 255=510."
Comments
Leave a comment