The length of a rectangular garden is 4m greater than the width. The area of the garden is 20m squared. Find the dimensions of the garden.
L=lengthW=widthL=W+4A=20m2A=L∗W(W+4)(W)=20W2+4W=20W2+4W−20=0W=−b±b2−4ac2aW=−4±16−(−80)2W=−4±462W1=2.9andW2=−6.9Thewidthcannotbenegative,sothewidthis2.9mlength,L=2.90+4=6.9mAnswer:length=6.9m;width=2.9mL = length\\W = width\\L = W + 4\\A = 20 m^2\\A=L*W\\(W+4)(W)=20\\W^2+4W=20\\W^2+4W-20=0\\W=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\W=\frac{-4\pm\sqrt{16-(-80)}}{2}\\ W=\frac{-4\pm4\sqrt{6}}{2}\\W_1=2.9\hspace{3pt}and\hspace{3pt}W_2=-6.9\\ The\hspace{3pt}width\hspace{3pt}cannot\hspace{3pt}be\hspace{3pt}negative, \hspace{3pt}so\hspace{3pt}the\hspace{3pt}width\hspace{3pt}is\hspace{3pt}2.9m\\ length, L=2.90 + 4=6.9m\\ Answer:length=6.9m;width=2.9mL=lengthW=widthL=W+4A=20m2A=L∗W(W+4)(W)=20W2+4W=20W2+4W−20=0W=2a−b±b2−4acW=2−4±16−(−80)W=2−4±46W1=2.9andW2=−6.9Thewidthcannotbenegative,sothewidthis2.9mlength,L=2.90+4=6.9mAnswer:length=6.9m;width=2.9m
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments