Answer to Question #275103 in Algebra for Upichu

Question #275103

What can you say about the upper bound of E(x) for numbers of the form 3^(2n) + 1?




1
Expert's answer
2022-01-02T17:40:46-0500

Consider the set

E(x)={33n+1:nN1}.E(x)ϕ. since 32+1E(x).E(x)R.\begin{aligned} &E(x)=\left\{3^{3 n}+1: n \in N 1\right\} . \\ &E(x) \neq \phi . \text { since } 3^{2}+1 \in E(x) . \\ &E(x) \subseteq \mathbb{R} . \end{aligned}

Now if c is the least upper of E(x).

c=lnb(((x)).c=\ln _{b}((-(x)).

ϵ>0,cϵ<32n+1,[cϵ,isnotnN.lub of E(x)]\forall \epsilon>0, \quad c-\epsilon<3^{2 n+1}, \quad[\because c-\epsilon, is not * n \in N. lub \ of \ E(x)]

Take

c232n<32n+1nNc-2 \cdot 3^{2 n}<3^{2 n}+1 \quad \forall n \in N \text {. }

c<32n+832n+1,nN.c<32n(1+8)+1.c<32n32+1c<32(n+1)+1.\begin{aligned} &c<3^{2 n}+8 \cdot 3^{2 n}+1, \quad \forall n \in N . \\ &c<3^{2 n}(1+8)+1 . \\ &c<3^{2 n} \cdot 3^{2}+1 \\ &c<3^{2(n+1)}+1 . \end{aligned}

c is not lub of E(x)

Thus E(x) has no upper bound.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment