Consider the set
E(x)={33n+1:n∈N1}.E(x)=ϕ. since 32+1∈E(x).E(x)⊆R.
Now if c is the least upper of E(x).
c=lnb((−(x)).
∀ϵ>0,c−ϵ<32n+1,[∵c−ϵ,isnot∗n∈N.lub of E(x)]
Take
c−2⋅32n<32n+1∀n∈N.
c<32n+8⋅32n+1,∀n∈N.c<32n(1+8)+1.c<32n⋅32+1c<32(n+1)+1.
c is not lub of E(x)
Thus E(x) has no upper bound.
Comments
Leave a comment