f(x)=5 This function has the constant value equal to 5, the graph is a horizontal line at this height
f(x)=3⋅ x + 2 \cdot x+2 ⋅ x + 2 This is the graph of a straight line. For drawing it is enough any two points on it, for example, x 1 = 0 , y 1 = 3 ⋅ x 1 + 2 = 3 ⋅ 0 + 2 = 2 , P 1 ( 0 , 2 ) x_1=0,y_1=3\cdot x_1+2=3\cdot 0+2=2,\space P_1(0,2) x 1 = 0 , y 1 = 3 ⋅ x 1 + 2 = 3 ⋅ 0 + 2 = 2 , P 1 ( 0 , 2 )
x 2 = 1 , y 2 = 3 ⋅ x 2 + 2 = 3 ⋅ 1 + 2 = 5 , P 2 ( 1 , 5 ) x_2=1,y_2=3\cdot x_2+2=3\cdot 1+2=5,\space P_2(1,5) x 2 = 1 , y 2 = 3 ⋅ x 2 + 2 = 3 ⋅ 1 + 2 = 5 , P 2 ( 1 , 5 )
q(x)=x 2 + 6 ⋅ x − 7 x^2+6\cdot x-7 x 2 + 6 ⋅ x − 7 This is a graph of a quadratic trinomial or parabola. It is useful to find its roots by solving an equation x 2 + 6 ⋅ x − 7 = 0 x^2+6\cdot x-7=0 x 2 + 6 ⋅ x − 7 = 0 . We have
x 1 = − 6 − 6 2 − 4 ⋅ 1 ⋅ ( − 7 ) 2 ⋅ 1 = − 6 − 64 2 ⋅ 1 = − 6 − 8 2 = − 7 x_1=\frac{-6-\sqrt{6^2-4\cdot 1\cdot (-7)}}{2\cdot 1}=\frac{-6-\sqrt{64}}{2\cdot 1}=\frac{-6-8}{2}=-7 x 1 = 2 ⋅ 1 − 6 − 6 2 − 4 ⋅ 1 ⋅ ( − 7 ) = 2 ⋅ 1 − 6 − 64 = 2 − 6 − 8 = − 7
x 2 = − 6 + 6 2 − 4 ⋅ 1 ⋅ ( − 7 ) 2 ⋅ 1 = − 6 + 64 2 ⋅ 1 = − 6 − + 8 2 = 1 x_2=\frac{-6+\sqrt{6^2-4\cdot 1\cdot (-7)}}{2\cdot 1}=\frac{-6+\sqrt{64}}{2\cdot 1}=\frac{-6-+8}{2}=1 x 2 = 2 ⋅ 1 − 6 + 6 2 − 4 ⋅ 1 ⋅ ( − 7 ) = 2 ⋅ 1 − 6 + 64 = 2 − 6 −+ 8 = 1
Thus we have two points P 1 ( − 7 , 0 ) , P 2 ( 1 , 0 ) P_1(-7,0),P_2(1,0) P 1 ( − 7 , 0 ) , P 2 ( 1 , 0 ) on the graph. The middle point isx 3 = − 7 + 1 2 = − 3 , y 3 = ( − 3 ) 2 + 6 ⋅ ( − 3 ) − 7 = − 16 x_3=\frac{-7+1}{2}=-3,y_3=(-3)^2+6\cdot(-3)-7=-16 x 3 = 2 − 7 + 1 = − 3 , y 3 = ( − 3 ) 2 + 6 ⋅ ( − 3 ) − 7 = − 16
Using these 3 sample points we may sketch the graph:
4 k ( x ) = x 3 k(x)=x^3 k ( x ) = x 3
This is a cubic parabola. For drawing its graph we create the table of sample values such as
x − 2 − 1 0 1 2 x 3 − 8 − 1 0 1 8 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:c}
x & -2 & -1 & 0 &1 &2\\ \hline
x^3 & -8 & -1 &0 &1&8\\
\hline
\end{array} x x 3 − 2 − 8 − 1 − 1 0 0 1 1 2 8
and draw a curve through them
5. h ₒ g =P(x)= 2x3 + x2 – 10x - 5
This line of the polynomial of 3-th degree
First derivative dP(x)/dx=8⋅ x 2 + 2 x − 10 = 0 ↔ x 1 = 1 , x 2 = 5 4 \cdot x^2+2x-10=0 ~\harr x_1=1,x_2=\frac{5}{4} ⋅ x 2 + 2 x − 10 = 0 ↔ x 1 = 1 , x 2 = 4 5
Second derivative d 2 P ( x ) d x 2 = 16 ⋅ x + 2 \frac{d^2P(x)}{dx^2}=16\cdot x+2 d x 2 d 2 P ( x ) = 16 ⋅ x + 2
d 2 P ( x ) d x 2 ( 1 ) = 16 ⋅ 1 + 2 = 18 > 0 → x 1 = 1 \frac{d^2P(x)}{dx^2}(1)=16\cdot 1+2=18>0\rarr x_1=1 d x 2 d 2 P ( x ) ( 1 ) = 16 ⋅ 1 + 2 = 18 > 0 → x 1 = 1 is a point of local minimum. P(1)=-12;
d 2 P ( x ) d x 2 ( − 5 4 ) = − 20 + 2 = − 18 > 0 → x 2 = − 5 4 \frac{d^2P(x)}{dx^2}(-\frac{5}{4})=-20+2=-18>0\rarr x_2=-\frac{5}{4} d x 2 d 2 P ( x ) ( − 4 5 ) = − 20 + 2 = − 18 > 0 → x 2 = − 4 5 is the point of local maximum.
P ( − 5 4 ) = − − 125 32 + 25 16 + 50 4 − 5 = 165 32 P(-\frac{5}{4})=-\frac{-125}{32}+\frac{25}{16}+\frac{50}{4}-5=\frac{165}{32} P ( − 4 5 ) = − 32 − 125 + 16 25 + 4 50 − 5 = 32 165
On ( − ∞ , − 5 4 ) (-\infty ,-\frac{5}{4}) ( − ∞ , − 4 5 ) P(x) increases, on(− 5 4 , 1 ) -\frac{5}{4},1) − 4 5 , 1 ) deceases and on ( 1. ∞ ) (1.\infty ) ( 1.∞ ) increases again.
P(-2.5)=-5,P(2.5)=7.5.P(0)=-5
Using analyzed information we sketch the graph:
6. g ₒ f =Q(x)= (2x + 1)(x – 3) = 2x2 – 5x -3
This is a parabola. Firstly we find its roots
x 1 = 5 − 49 4 = − 0.5 , x 2 = 5 + 49 4 = 3 , x_1=\frac{5-\sqrt{49}}{4}=-0.5, x_2=\frac{5+\sqrt{49}}{4}=3, x 1 = 4 5 − 49 = − 0.5 , x 2 = 4 5 + 49 = 3 ,
the vertex of the parabola is in the middle point x 3 = − 0.5 + 3 2 = 1.25 , y 3 = 2 ⋅ 1.2 5 2 − 5 ⋅ 1.25 − 3 x_3=\frac{-0.5+3}{2}=1.25,y_3=2\cdot 1.25^2-5\cdot 1.25-3 x 3 = 2 − 0.5 + 3 = 1.25 , y 3 = 2 ⋅ 1.2 5 2 − 5 ⋅ 1.25 − 3 =-6.125
Q(-1)=5,Q(4)=9. Using this information we draw the graph:
Comments