Question #274705

Sketch the graph of the functions:



1. f(x) = 5



2. h(x) = 3x + 2



3. q(x) = x2 + 6x -7



4. k(x) =



5. h ₒ g = 2x3 + x2 – 10x - 5



6. g ₒ f = (2x + 1)(x – 3) = 2x2 – 5x -3


1
Expert's answer
2021-12-03T10:08:25-0500
  1. f(x)=5

This function has the constant value equal to 5, the graph is a horizontal line at this height





  1. f(x)=3x+2\cdot x+2

This is the graph of a straight line. For drawing it is enough any two points on it, for example, x1=0,y1=3x1+2=30+2=2, P1(0,2)x_1=0,y_1=3\cdot x_1+2=3\cdot 0+2=2,\space P_1(0,2)

x2=1,y2=3x2+2=31+2=5, P2(1,5)x_2=1,y_2=3\cdot x_2+2=3\cdot 1+2=5,\space P_2(1,5)





  1. q(x)=x2+6x7x^2+6\cdot x-7

This is a graph of a quadratic trinomial or parabola. It is useful to find its roots by solving an equation x2+6x7=0x^2+6\cdot x-7=0 . We have

x1=66241(7)21=66421=682=7x_1=\frac{-6-\sqrt{6^2-4\cdot 1\cdot (-7)}}{2\cdot 1}=\frac{-6-\sqrt{64}}{2\cdot 1}=\frac{-6-8}{2}=-7

x2=6+6241(7)21=6+6421=6+82=1x_2=\frac{-6+\sqrt{6^2-4\cdot 1\cdot (-7)}}{2\cdot 1}=\frac{-6+\sqrt{64}}{2\cdot 1}=\frac{-6-+8}{2}=1

Thus we have two points P1(7,0),P2(1,0)P_1(-7,0),P_2(1,0) on the graph. The middle point isx3=7+12=3,y3=(3)2+6(3)7=16x_3=\frac{-7+1}{2}=-3,y_3=(-3)^2+6\cdot(-3)-7=-16

Using these 3 sample points we may sketch the graph:



4 k(x)=x3k(x)=x^3

This is a cubic parabola. For drawing its graph we create the table of sample values such as

x21012x381018\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} x & -2 & -1 & 0 &1 &2\\ \hline x^3 & -8 & -1 &0 &1&8\\ \hline \end{array}

and draw a curve through them




5. h ₒ g =P(x)= 2x3 + x2 – 10x - 5

This line of the polynomial of 3-th degree

First derivative dP(x)/dx=8x2+2x10=0 x1=1,x2=54\cdot x^2+2x-10=0 ~\harr x_1=1,x_2=\frac{5}{4}

Second derivative d2P(x)dx2=16x+2\frac{d^2P(x)}{dx^2}=16\cdot x+2

d2P(x)dx2(1)=161+2=18>0x1=1\frac{d^2P(x)}{dx^2}(1)=16\cdot 1+2=18>0\rarr x_1=1 is a point of local minimum. P(1)=-12;

d2P(x)dx2(54)=20+2=18>0x2=54\frac{d^2P(x)}{dx^2}(-\frac{5}{4})=-20+2=-18>0\rarr x_2=-\frac{5}{4} is the point of local maximum.

P(54)=12532+2516+5045=16532P(-\frac{5}{4})=-\frac{-125}{32}+\frac{25}{16}+\frac{50}{4}-5=\frac{165}{32}

On (,54)(-\infty ,-\frac{5}{4}) P(x) increases, on(54,1)-\frac{5}{4},1) deceases and on (1.)(1.\infty ) increases again.

P(-2.5)=-5,P(2.5)=7.5.P(0)=-5

Using analyzed information we sketch the graph:




6. g ₒ f =Q(x)= (2x + 1)(x – 3) = 2x2 – 5x -3

This is a parabola. Firstly we find its roots

x1=5494=0.5,x2=5+494=3,x_1=\frac{5-\sqrt{49}}{4}=-0.5, x_2=\frac{5+\sqrt{49}}{4}=3,

the vertex of the parabola is in the middle point x3=0.5+32=1.25,y3=21.25251.253x_3=\frac{-0.5+3}{2}=1.25,y_3=2\cdot 1.25^2-5\cdot 1.25-3 =-6.125

Q(-1)=5,Q(4)=9. Using this information we draw the graph:


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS