Answer to Question #233063 in Algebra for dizzo

Question #233063

28. (a) Given the equation

x^2+qx+2a^2-b^2+ab=0

i) Factorize the independent term of the equation /3mrks

ii) After determining the product of roots of (E), deduce the roots given that one of them is

a +b /3mrks


iii) Deduce q in terms of a and b. /2mrks

(b) Determine two numbers whose S = 4a -b and P 3a^2- 2b^2- 5ab /4mrks


(c) Given the equation 3x^2+ kx + 8 = 0. Determine the roots of this equation if their ratio is 1.5.


Deduce the value of k.


1
Expert's answer
2021-09-06T16:42:59-0400
x2+qx+2a2b2+ab=0x^2+qx+2a^2-b^2+ab=0

i)


2a2b2+ab=a2b2+a2+ab2a^2-b^2+ab=a^2-b^2+a^2+ab

(ab)(a+b)+a(a+b)=(2ab)(a+b)(a-b)(a+b)+a(a+b)=(2a-b)(a+b)

ii)


x1x2=(2ab)(a+b)1=(2ab)(a+b)x_1x_2=\dfrac{(2a-b)(a+b)}{1}=(2a-b)(a+b)

If x1=a+b,x_1=a+b, then x2=2ab.x_2=2a-b.

{a+b,2ab}\{ a+b, 2a-b\}


iii)


x1+x2=q1=qx_1+x_2=-\dfrac{q}{1}=-q

q=(a+b+2ab)q=-(a+b+2a-b)

q=3aq=-3a

(b)


x1+x2=4abx_1+x_2=4a-b

x1x2=3a22b25abx_1x_2=3a^2-2b^2-5ab

x2(4ab)x+3a22b25ab=0x^2-(4a-b)x+3a^2-2b^2-5ab=0

D=(4ab)24(3a22b25ab)D=(4a-b)^2-4(3a^2-2b^2-5ab)

=16a28ab+b212a2+8b2+20ab=16a^2-8ab+b^2-12a^2+8b^2+20ab

=4a2+12ab+9b2=(2a+3b)2=4a^2+12ab+9b^2=(2a+3b)^2

x=((4ab))±(2a+3b)22x=\dfrac{-(-(4a-b))\pm\sqrt{(2a+3b)^2}}{2}

=4ab±(2a+3b)2=\dfrac{4a-b\pm(2a+3b)}{2}

x1=4ab(2a+3b)2=4ab2a3b2=a2bx_1=\dfrac{4a-b-(2a+3b)}{2}=\dfrac{4a-b-2a-3b}{2}=a-2b

x2=4ab+(2a+3b)2=4ab+2a+3b2=3a+bx_2=\dfrac{4a-b+(2a+3b)}{2}=\dfrac{4a-b+2a+3b}{2}=3a+b

(c)


3x2+kx+8=03x^2+ kx + 8 = 0

x1=1.5x2x_1=1.5x_2

x1x2=83x_1x_2=\dfrac{8}{3}

1.5x22=831.5x_2^2=\dfrac{8}{3}

x22=169x_2^2=\dfrac{16}{9}

x2=43,x1=2,k=x1+x2=103x_2=-\dfrac{4}{3}, x_1=-2, k=x_1+x_2=-\dfrac{10}{3}

Or


x2=43,x1=2,k=x1+x2=103x_2=\dfrac{4}{3}, x_1=2, k=x_1+x_2=\dfrac{10}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment