28. (a) Given the equation
x^2+qx+2a^2-b^2+ab=0
i) Factorize the independent term of the equation /3mrks
ii) After determining the product of roots of (E), deduce the roots given that one of them is
a +b /3mrks
iii) Deduce q in terms of a and b. /2mrks
(b) Determine two numbers whose S = 4a -b and P 3a^2- 2b^2- 5ab /4mrks
(c) Given the equation 3x^2+ kx + 8 = 0. Determine the roots of this equation if their ratio is 1.5.
Deduce the value of k.
i)
"(a-b)(a+b)+a(a+b)=(2a-b)(a+b)"
ii)
If "x_1=a+b," then "x_2=2a-b."
"\\{ a+b, 2a-b\\}"
iii)
"q=-(a+b+2a-b)"
"q=-3a"
(b)
"x_1x_2=3a^2-2b^2-5ab"
"x^2-(4a-b)x+3a^2-2b^2-5ab=0"
"D=(4a-b)^2-4(3a^2-2b^2-5ab)"
"=16a^2-8ab+b^2-12a^2+8b^2+20ab"
"=4a^2+12ab+9b^2=(2a+3b)^2"
"x=\\dfrac{-(-(4a-b))\\pm\\sqrt{(2a+3b)^2}}{2}"
"=\\dfrac{4a-b\\pm(2a+3b)}{2}"
"x_1=\\dfrac{4a-b-(2a+3b)}{2}=\\dfrac{4a-b-2a-3b}{2}=a-2b"
"x_2=\\dfrac{4a-b+(2a+3b)}{2}=\\dfrac{4a-b+2a+3b}{2}=3a+b"
(c)
"x_1=1.5x_2"
"x_1x_2=\\dfrac{8}{3}"
"1.5x_2^2=\\dfrac{8}{3}"
"x_2^2=\\dfrac{16}{9}"
"x_2=-\\dfrac{4}{3}, x_1=-2, k=x_1+x_2=-\\dfrac{10}{3}"
Or
Comments
Leave a comment