(a)
2 x + 3 < 3 x + 4 > x + 5 2x+3<3x+4>x+5 2 x + 3 < 3 x + 4 > x + 5 Then
2 x + 3 < 3 x + 4 3 x + 4 > x + 5 \begin{matrix}
2x+3<3x+4 \\
3x+4>x+5
\end{matrix} 2 x + 3 < 3 x + 4 3 x + 4 > x + 5
x > − 1 2 x > 1 \begin{matrix}
x>-1 \\
2x>1
\end{matrix} x > − 1 2 x > 1
Answer: x > 1 2 x>\dfrac{1}{2} x > 2 1
x ∈ ( 1 2 , ∞ ) x\in(\dfrac{1}{2}, \infin) x ∈ ( 2 1 , ∞ )
(b)
2 x 2 + 4 = 0 2x^2+4=0 2 x 2 + 4 = 0
x 2 ≥ 0 , x ∈ R x^2\geq0, x\in\R x 2 ≥ 0 , x ∈ R
2 x 2 + 4 ≥ 4 , x ∈ R 2x^2+4\geq4, x\in\R 2 x 2 + 4 ≥ 4 , x ∈ R
The given equation has no solution for x ∈ R . x\in\R. x ∈ R .
2 x 2 + 4 = 0 2x^2+4=0 2 x 2 + 4 = 0
x 2 = − 2 x^2=-2 x 2 = − 2
x 1 = − i 2 , x 2 = i 2 x_1=-i\sqrt{2}, x_2=i\sqrt{2} x 1 = − i 2 , x 2 = i 2
(c)
2 sin ( 180 − x ) = 1 2\sin(180-x) =1 2 sin ( 180 − x ) = 1
2 sin x = 1 2\sin x=1 2 sin x = 1
sin x = 1 2 \sin x=\dfrac{1}{2} sin x = 2 1
x = ( − 1 ) n ⋅ 30 ° + 180 ° n , n ∈ Z x=(-1)^n\cdot30\degree+180\degree n, n\in\Z x = ( − 1 ) n ⋅ 30° + 180° n , n ∈ Z
(d)
x 2 − x − 6 x 2 − x − 2 < 0 \dfrac{x^2-x-6}{x^2-x-2}<0 x 2 − x − 2 x 2 − x − 6 < 0
( x 2 − x − 6 ) ( x 2 − x − 2 ) < 0 (x^2-x-6)(x^2-x-2)<0 ( x 2 − x − 6 ) ( x 2 − x − 2 ) < 0
( x + 2 ) ( x − 3 ) ( x + 1 ) ( x − 2 ) < 0 (x+2)(x-3)(x+1)(x-2)<0 ( x + 2 ) ( x − 3 ) ( x + 1 ) ( x − 2 ) < 0
x ∈ ( − 2 , − 1 ) ∪ ( 2 , 3 ) x\in(-2, -1)\cup(2, 3) x ∈ ( − 2 , − 1 ) ∪ ( 2 , 3 )
Comments