Answer to Question #233060 in Algebra for dizzo

Question #233060

Discuss the roots and signs of the equation : (m+1)x^2+4(m-1)x+4-m=0


1
Expert's answer
2021-09-06T17:57:41-0400

We have to use the general equation to solve the second-degree formula and determine a, b and c:


(m+1)x2+4(m1)x+4m=ax2+bx+c=0(m+1)x^2+4(m-1)x+4-m =ax^2+bx+c=0


We substitute and find x: x=b±b24ac2ax=\frac{-b\plusmn \sqrt{b^2-4a\cdot c}}{2a}


x=4(m1)±[4(m1)]24(m+1)(4m)2(m+1)x=44m±[16(m22m+1)]4(4+3mm2)2m+2x=44m±16m232m+161612m+4m2)2m+2x=44m±20m244m2m+2=44m±4(5m211m)2m+2x=2(22m)±25m211m2(m+1)=22m±5m211mm+1x=22m±(5m11)mm+1x=\dfrac{-4(m-1)\plusmn \sqrt{[4(m-1)]^2-4(m+1) (4-m)}}{2(m+1)} \\ x=\dfrac{4-4m\plusmn \sqrt{[16(m^2-2m+1)]-4(4+3m-m^2)}}{2m+2} \\ x=\dfrac{4-4m\plusmn \sqrt{16m^2-32m+16-16-12m+4m^2)}}{2m+2} \\ x=\dfrac{4-4m\plusmn \sqrt{20m^2-44m}}{2m+2}=\dfrac{4-4m\plusmn \sqrt{4(5m^2-11m)}}{2m+2} \\ x=\dfrac{2(2-2m)\plusmn 2\sqrt{5m^2-11m}}{2(m+1)}=\dfrac{2-2m\plusmn \sqrt{5m^2-11m}}{m+1} \\ x=\dfrac{2-2m\plusmn \sqrt{(5m-11)m}}{m+1}


Then, we can observe that the function has the following critical points m={1,0,115}m={\{ -1, 0, \frac{11}{5} \} }.


When we consider m<1m<-1 to find the values of x we will find two possible real values for x (one positive and one negative). On the next interval 1<m0-1<m\le 0 we have two possible positive values for x. The following interval 0<m<1150<m<\frac{11}{5} gives an imaginary solution for x in the form a+bi. The values following 115<m<4\frac{11}{5}<m<4 give two possible negative values for x, while for m4m\ge 4 we will have two possible values for x (one positive and one negative).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment