Which one of the following is the set of solutions of Sin(3x) + Cos(3x) =0 on the interval ( - pie + pie)?
1.(-5pie/ 12, -pie/12, pie/4, 7pie/12)
2.(-pie/4, -pie/12, pie/4, 7pie/12,11pie/12)
3.(-3pie/4, -5pie/12, - pie/12, pie/4, 7pie/12, 11pie/12)
4.None of the preceding.
"\\displaystyle \nsin(3x) + cos(3x) = 0\n\\\\sin(3x) = -cos(3x)\n\\\\tan(3x) = -1\n\\\\\\implies 3x = -\\frac{\\pi}{4}+k\\pi, k \\in \\mathbb{Z}\n\\\\x= -\\frac{\\pi}{12}+\\frac{k\\pi}{3}\n\\\\\\text{Since x $\\in (-\\pi, \\pi), -2\\leq k \\leq 3$ }\n\\\\\\text{Thus the solution set is }\\{-\\frac{3\\pi}{4}, -\\frac{5\\pi}{12},-\\frac{\\pi}{12},\\frac{\\pi}{4}, \\frac{7\\pi}{12}, \\frac{11\\pi}{12} \\}"
Comments
Leave a comment