Question #211539

If Let (2153)(xy)=(24)\begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix},

Solve for x and y


1
Expert's answer
2021-07-05T17:08:29-0400


(2153)(xy)=(24)\begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}

Performing matrix multiplication

(2x+y5x+3y)=(24)\begin{pmatrix}2 x+y \\5x+3 y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}

Equating corresponding elements we get

2x + y = 2 ••••••••••(1)

5x + 3y = 4. ••••••••••(2)

Multiplying equation (1) by 3 we get

6x + 3y = 6 ••••••••••(3)

Then subtracting equation (2) from equation (3) we get

6x + 3y - 5x - 3y = 6 - 4

=> x = 2

Substituting x = 2 in equation (1) we get

4 + y = 2

=> y = 2 - 4 = - 2

So solution is x = 2 and y = -2




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS