Question #208426

. Find the term independent of x in the expansion of (x^ 3+2/x)^ 20


1
Expert's answer
2021-06-21T07:58:30-0400

By the Binomial Theorem


(a+b)n=(n0)anb0+(n1)an1b1+(n2)an2b2(a+b)^n=\dbinom{n}{0}a^nb^0+\dbinom{n}{1}a^{n-1}b^{1}+\dbinom{n}{2}a^{n-2}b^{2}

+...+(nn1)a1bn1+(nn)a0bn+...+\dbinom{n}{n-1}a^{1}b^{n-1}+\dbinom{n}{n}a^{0}b^{n}

We have a=x3,b=2x=2x1,n=20.a=x^3, b=\dfrac{2}{x}=2x^{-1}, n=20.

If the term is independent of x,x, then


(x3)20k(x1)k=x0,(x^3)^{20-k}(x^{-1})^k=x^{0},

603kk=060-3k-k=0

k=15k=15

(2015)(x3)2015(2x)15=15504(32768)\dbinom{20}{15}(x^3)^{20-15}\bigg(\dfrac{2}{x}\bigg)^{15}=15504(32768)

=508035072=508035072



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS